$$\,\,\,\,\,\,\,\,{\rm I}.\,\,\,\,\,\,\,$$ For an unrestricted grammar $$G$$ and a string $$W,$$ whether $$w \in L\left( G \right)$$
$$\,\,\,\,\,\,{\rm II}.\,\,\,\,\,\,\,$$ Given a Turing machine $$M,$$ whether $$L(M)$$ is regular
$$\,\,\,\,{\rm III}.\,\,\,\,\,\,\,$$ Given two grammars $${G_1}$$ and $${G_2}$$, whether $$L\left( {{G_1}} \right) = L\left( {{G_2}} \right)$$
$$\,\,\,\,{\rm IV}.\,\,\,\,\,\,\,$$ Given an $$NFA$$ $$N,$$ whether there is a deterministic $$PDA$$ $$P$$ such that $$N$$
$$\,\,\,\,\,\,\,\,\,\,\,\,\,$$ $$\,\,\,\,\,\,\,\\,\,\,$$and $$P$$ accept the same language.
Which one of the following statements is correct?
$${L^i} = {L^{i - 1}}.\,\,L$$ for all $$i > 0$$
The order of a language $$L$$ is defined as the smallest k such that $${L^k} = {L^{k + 1}}.$$ Consider the language $${L_1}$$ (over alphabet $$0$$) accepted by the following automaton.
The order of $${L_1}$$ is _____.