1
GATE CSE 2018
MCQ (Single Correct Answer)
+2
-0.6
Which one of the following statements is FALSE?
2
GATE CSE 2018
Numerical
+1
-0
Consider a long-lived $$TCP$$ session with an end-to-end bandwidth of $$1$$ $$Gbps$$ ($$ = {10^9}\,$$ bits-persecond). The session starts with a sequence number of $$1234.$$ The minimum time (in seconds, rounded to the closest integer) before this sequence number can be used again is _______.
Your input ____
3
GATE CSE 2018
Numerical
+2
-0
Consider an $$IP$$ packet with a length of $$4,500$$ bytes that includes a $$20$$-byte $$IPv$$$$4$$ header and a $$40$$-byte $$TCP$$ header. The packet is forwarded to an $$IPv4$$ router that supports a Maximum Transmission Unit $$(MTU)$$ of $$600$$ bytes. Assume that the length of the $$IP$$ header in all the outgoing fragments of this packet is $$20$$ bytes. Assume that the fragmentation offset value stored in the first fragment is $$0.$$
The fragmentation offset value stored in the third fragment is _______.
Your input ____
4
GATE CSE 2018
Numerical
+2
-0
Consider a simple communication system where multiple nodes are connected by a shared broadcast medium (like Ethernet or wireless). The nodes in the system use the following carrier-sense based medium access protocol. A node that receives a packet to transmit will carrier-sense the medium for $$5$$ units of time. If the node does not detect any other transmission in this duration, it starts transmitting its packet in the next time unit. If the node detects another transmission, it waits until this other transmission finishes, and then begins to carrier-sense for $$5$$ time units again. Once they start to transmit, nodes do not perform any collision detection and continue transmission even if a collision occurs. All transmissions last for $$20$$ units of time. Assume that the transmission signal travels at the speed of $$10$$ meters per unit time in the medium.
Assume that the system has two nodes $$P$$ and $$Q,$$ located at a distance $$d$$ meters from each other. $$P$$ starts transmitting a packet at time $$t=0$$ after successfully completing its carrier-sense phase. Node $$Q$$ has a packet to transmit at time $$t=0$$ and begins to carrier-sense the medium.
The maximum distance $$d$$ (in meters, rounded to the closest integer) that allows $$Q$$ to successfully avoid a collision between its proposed transmission and $$Pβs$$ ongoing transmission is _____.
Your input ____
Paper analysis
Total Questions
Algorithms
4
Compiler Design
3
Computer Networks
5
Computer Organization
6
Data Structures
4
Database Management System
3
Digital Logic
4
Discrete Mathematics
10
Operating Systems
4
Programming Languages
4
Theory of Computation
5
General Aptitude
11
More papers of GATE CSE
GATE CSE 2024 Set 2
GATE CSE 2024 Set 1
GATE CSE 2023
GATE CSE 2022
GATE CSE 2021 Set 2
GATE CSE 2021 Set 1
GATE CSE 2020
GATE CSE 2019
GATE CSE 2018
GATE CSE 2017 Set 2
GATE CSE 2017 Set 1
GATE CSE 2016 Set 2
GATE CSE 2016 Set 1
GATE CSE 2015 Set 1
GATE CSE 2015 Set 3
GATE CSE 2015 Set 2
GATE CSE 2014 Set 2
GATE CSE 2014 Set 3
GATE CSE 2014 Set 1
GATE CSE 2013
GATE CSE 2012
GATE CSE 2011
GATE CSE 2010
GATE CSE 2009
GATE CSE 2008
GATE CSE 2007
GATE CSE 2006
GATE CSE 2005
GATE CSE 2004
GATE CSE 2003
GATE CSE 2002
GATE CSE 2001
GATE CSE 2000
GATE CSE 1999
GATE CSE 1998
GATE CSE 1997
GATE CSE 1996
GATE CSE 1995
GATE CSE 1994
GATE CSE 1993
GATE CSE 1992
GATE CSE 1991
GATE CSE 1990
GATE CSE 1989
GATE CSE 1988
GATE CSE 1987
GATE CSE
Papers
2023
2022
2020
2019
2018
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987