$$\,\,\,\,\,\,\,\,$$ $$P:$$ Set of Rational numbers (positive and negative)
$$\,\,\,\,\,\,\,\,$$ $$Q:$$ Set of functions from $$\left\{ {0,1} \right\}$$ to $$N$$
$$\,\,\,\,\,\,\,\,$$ $$R:$$ Set of functions from $$N$$ to $$\left\{ {0,1} \right\}$$
$$\,\,\,\,\,\,\,\,$$ $$S:$$ Set of finite subsets of $$N.$$
Which of the sets above are countable?
$$\varphi \equiv \,\,\,\,\,\,\,\exists s\exists t\exists u\forall v\forall w$$ $$\forall x\forall y\psi \left( {s,t,u,v,w,x,y} \right)$$
where $$\psi $$ $$(π ,π‘, π’, π£, π€, π₯, π¦)$$ is a quantifier-free first-order logic formula using only predicate symbols, and possibly equality, but no function symbols. Suppose $$\varphi $$ has a model with a universe containing $$7$$ elements.
Which one of the following statements is necessarily true?
The following table gives the conditional probabilities for Delhiβs temperature given Guwahatiβs temperature.
HD | MD | LD | |
---|---|---|---|
HG | 0.40 | 0.48 | 0.12 |
MG | 0.10 | 0.65 | 0.25 |
LG | 0.01 | 0.50 | 0.49 |
Consider the first row in the table above. The first entry denotes that if Guwahati has high temperature $$\left( {{H_G}} \right)$$ then the probability of Delhi also having a high temperature $$\left( {{H_D}} \right)$$ is $$0.40;$$ i.e., $$P\left( {{H_D}|{H_G}} \right) = 0.40.$$ Similarly, the next two entries are $$P\left( {{M_D}|{H_G}} \right) = 0.48$$ and $$P\left( {{L_D}|{H_G}} \right) = 0.12.$$ Similarly for the other rows.
If it is known that $$P\left( {{H_G}} \right) = 0.2,\,\,$$ $$P\left( {{M_G}} \right) = 0.5,\,\,$$ and $$P\left( {{L_G}} \right) = 0.3,\,\,$$ then the probability (correct to two decimal places) that Guwahati has high temperature given that Delhi has high temperature is _______.