1
GATE CSE 2004
MCQ (Single Correct Answer)
+1
-0.3
In a population of N families, 50% of the families have three children, 30% of the families have two children and the remaining families have one child. What is the probability that a randomly picked child belongs to a family with two children ?
A
$$\,{3 \over {23}}$$
B
$$\,{6 \over {23}}$$
C
$$\,{3 \over {10}}$$
D
$$\,{3 \over {5}}$$
2
GATE CSE 2004
MCQ (Single Correct Answer)
+2
-0.6
The following propositional statement is $$$\left( {P \to \left( {Q \vee R} \right)} \right) \to \left( {\left( {P \wedge Q} \right) \to R} \right)$$$
A
Satisfiable but not valid
B
Valid
C
A contradiction
D
None of the above
3
GATE CSE 2004
MCQ (Single Correct Answer)
+2
-0.6
Let $$p, q, r$$ and $$s$$ be four primitive statements. Consider the following arguments:

$$P:\left[ {\left( {\neg p \vee q} \right) \wedge \left( {r \to s} \right) \wedge \left( {p \vee r} \right)} \right] \to \left( {\neg s \to q} \right)$$
$$Q:\left[ {\left( {\neg p \wedge q} \right) \wedge \left[ {q \to \left( {p \to r} \right)} \right]} \right] \to \neg r$$
$$R:\left[ {\left[ {\left( {q \wedge r} \right) \to p} \right] \wedge \left( {\neg q \vee p} \right)} \right] \to r$$
$$S:\left[ {p \wedge \left( {p \to r} \right) \wedge \left( {q \vee \neg r} \right)} \right] \to q$$

Which of the above arguments are valid?

A
$$P$$ and $$Q$$ only
B
$$P$$ and $$R$$ only
C
$$P$$ and $$S$$ only
D
$$P, Q, R$$ and $$S$$
4
GATE CSE 2004
MCQ (Single Correct Answer)
+1
-0.3
Let $$a(x,y)$$, $$b(x,y)$$ and $$c(x,y)$$ be three statements with variables $$x$$ and $$y$$ chosen from some universe. Consider the following statement: $$$\left( {\exists x} \right)\left( {\forall y} \right)\left[ {\left( {a\left( {x,\,y} \right) \wedge b\left( {x,\,y} \right)} \right) \wedge \neg c\left( {x,\,y} \right)} \right]$$$

Which one of the following is its equivalent?

A
$$\left( {\forall x} \right)\left( {\exists y} \right)\left[ {\left( {a\left( {x,\,y} \right) \vee b\left( {x,\,y} \right)} \right) \to c\left( {x,\,y} \right)} \right]$$
B
$$\left( {\exists x} \right)\left( {\forall y} \right)\left[ {\left( {a\left( {x,\,y} \right) \vee b\left( {x,\,y} \right)} \right) \wedge \neg c\left( {x,\,y} \right)} \right]$$
C
$$ - \left[ {\left( {\forall x} \right)\left( {\exists y} \right)\left[ {\left( {a\left( {x,\,y} \right) \wedge b\left( {x,\,y} \right)} \right) \to c\left( {x,\,y} \right)} \right]} \right]$$
D
$$ - \left[ {\left( {\forall x} \right)\left( {\exists y} \right)\left[ {\left( {a\left( {x,\,y} \right) \vee b\left( {x,\,y} \right)} \right) \to c\left( {x,\,y} \right)} \right]} \right]$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12