1
TG EAPCET 2024 (Online) 11th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
The equation $16 x^{4}+16 x^{3}-4 x-1=0$ has a multiple root. If $\alpha, \beta, \gamma, \delta$ are the roots of this equation, then $\frac{1}{\alpha^{4}}+\frac{1}{\beta^{4}}+\frac{1}{\gamma^{4}}+\frac{1}{\delta^{4}}=$
A
$\frac{1}{64}$
B
$\frac{1}{32}$
C
32
D
64
2
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
The solution set of the equation $3^{x}+3^{1-x}-4 < 0$ contained in $R$ is
A
$(1,2)$
B
$(1,3)$
C
$(0,2)$
D
$(0,1)$
3
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0
The common solution set of the inequations $x^{2}-4 x \leq 12$ and $x^{2}-2 x \geq 15$ taken together is
A
$(5,6)$
B
$[5,6]$
C
$[-3,5]$
D
$(-\infty,-3] \cup[5, \infty)$
4
TG EAPCET 2024 (Online) 10th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

With respect to the roots of the equation $3 x^{3}+b x^{2}+b x+3=0$, match the items of List I with those fo List II

List I List II
A All the roots are negative. I. $(b-3)^2=36+P^2$ for $P \in R$
B Two roots are complex. II. $-3<b<9$
C Two roots are positive. III. $b \in(-\infty,-3) \cup(9, \infty)$
D All roots are real and IV. $b=9$
V. $b=-3$
A
A - V, B - III, C - I, D- II
B
A - IV, B - I, C - II, D- III
C
A - V, B - II, C - III, D-I
D
A - IV, B - II, C - V, D- III
TS EAMCET Subjects
EXAM MAP