1
TG EAPCET 2024 (Online) 9th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

If the quadratic equation $3 x^2+(2 k+1) x-5 k=0$ has real and equal roots, then the value of $k$ such that

$\frac{1}{2}$ < $k$ < 0 is

A
$\frac{-16+\sqrt{255}}{2}$
B
$\frac{-16-\sqrt{255}}{2}$
C
$-\frac{2}{3}$
D
$-\frac{3}{5}$
2
TG EAPCET 2024 (Online) 9th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
The equations $2 x^2+a x-2=0$ and $x^2+x+2 a=0$ have exactly one common root. If $a \neq 0$, then one of the roots of the equation $a x^2-4 x-2 a=0$ is
A
2
B
-2
C
$\frac{-4+\sqrt{22}}{3}$
D
$\frac{-2+\sqrt{22}}{3}$
3
TG EAPCET 2024 (Online) 9th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $\alpha, \beta$ and $\gamma$ are the roots of the equation $2 x^3-3 x^2+5 x-7=0$, then $\sum \alpha^2 \beta^2=$
A
$-\frac{17}{4}$
B
$\frac{17}{4}$
C
$-\frac{13}{4}$
D
$\frac{13}{4}$
4
TG EAPCET 2024 (Online) 9th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
The sum of two roots of the equation $x^4-x^3-16 x^2+4 x+48=0$ is zero. If $\alpha, \beta, \gamma$ and $\delta$ are the roots of this equation, then $\alpha^4+\beta^4+\gamma^4+\delta^4=$
A
123
B
369
C
132
D
396
TS EAMCET Subjects
EXAM MAP