Two straight conducting plates form an angle $$\theta$$ where their ends are joined. A conducting bar in contact with the plates and forming an isosceles triangle with them starts at the vertex at time $$t=0$$ and moves with constant velocity $$\vec{v}$$ to the right as shown in figure. A magnetic field $$\vec{B}$$ points out of the page. The magnitude of emf induced at $$t=1$$ second will be
The electric field of a plane electromagnetic wave of wave number k and angular frequency $$\omega$$ is given $$\vec{E}=E_{0}(\hat{i}+\hat{j}) \sin (k z-\omega t)$$. Which of the following gives the direction of the associated magnetic field $$\vec{B}$$ ?
A charged particle in a uniform magnetic field $$\vec{B}=B_{0} \hat{k}$$ starts moving from the origin with velocity $$v=3 \hat{\mathrm{i}}+4 \hat{\mathrm{k}} ~\mathrm{m} / \mathrm{s}$$. The trajectory of the particle and the time $$t$$ at which it reaches $$2 \mathrm{~m}$$ above $$\mathrm{x}-\mathrm{y}$$ plane are,
In a closed circuit there is only a coil of inductance L and resistance 100 $$\Omega$$. The coil is situated in a uniform magnetic field. All on a sudden, the magnetic flux linked with the circuit changes by 5 Weber. What amount of charge will flow in the circuit as a result?