Two springs are joined and attached to a mass of 16 kg. The system is then suspended vertically from a rigid support. The spring constant of the two springs are K1 and K2 respectively. The period of vertical oscillations of the system will be
A simple pendulum is taken at a place where its distance from the earth's surface is equal to the radius of the earth. Calculate the time period of small oscillations if the length of the string is 4.0 m . (Take $g=\pi^2 \mathrm{~ms}^{-2}$ at the surface of the earth.)
The variation of displacement with time of a simple harmonic motion (SHM) for a particle of mass $m$ is represented by $y=2 \sin \left(\frac{\pi t}{2}+\phi\right) \mathrm{cm}$. The maximum acceleration of the particle is
A particle of mass '$$m$$' moves in one dimension under the action of a conservative force whose potential energy has the form of $$U(x)=-\frac{\alpha x}{x^2+\beta^2}$$ where $$\alpha$$ and $$\beta$$ are dimensional parameters. The angular frequency of the oscillation is proportional to