1
TS EAMCET 2023 (Online) 12th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

Let $A$ be a matrix such that $A B$ is a scalar matrix, where $B=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$ and $\operatorname{det}(3 A)=27$. Then, $3 A^{-1}+A^2=$

A
$\left[\begin{array}{cc}4 & -6 \\ 0 & 2\end{array}\right]$
B
$\left[\begin{array}{cc}9 & -4 \\ 0 & 3\end{array}\right]$
C
$\left[\begin{array}{cc}10 & -6 \\ 0 & 2\end{array}\right]$
D
$\left[\begin{array}{cc}10 & -6 \\ 0 & 4\end{array}\right]$
2
TS EAMCET 2023 (Online) 12th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

If $A$ is a symmetric matrix with real entries, then

A
$A^{-1}$ is symmetric, if it exists
B
$A^{-1}$ always exists and is symmetric
C
$A^{-1}$ is skew-symmetric, if it exists
D
$A^{-1}$ always exists and is skew-symmetric
3
TS EAMCET 2023 (Online) 12th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

$$ \begin{aligned} &\text { If } \omega \neq 1 \text { is a cube root of unity, then }\\ &\left|\begin{array}{ccc} \omega+\omega^2 & \omega^2+\omega^9 & \omega^9+\omega \\ \omega^{27}+\omega^{31} & \omega^{31}+\omega^{17} & \omega^{17}+\omega^{27} \\ \omega^{30}+\omega^{41} & \omega^{41}+\omega^{19} & \omega^{19}+\omega^{30} \end{array}\right|= \end{aligned} $$

A
3
B
2
C
1
D
0
4
TS EAMCET 2023 (Online) 12th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $P$ is a non-singular matrix such that $I+P+P^2+\ldots \ldots+P^n=0(0$ denotes the null matrix $)$, then $P^{-1}=$
A
$P^n$
B
$-P^n$
C
$-\left(1+P+\ldots \ldots+P^n\right)$
D
$-\left(1+P+\ldots \ldots+P^{n-1}\right)$
TS EAMCET Subjects
EXAM MAP