1
TG EAPCET 2024 (Online) 9th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
$A, B, C$ and $D$ are square matrices such that $A+B$ is symmetric, $A-B$ is skew-symmetric and $D$ is the transpose of $C$. If $A=\left[\begin{array}{ccc}-1 & 2 & 3 \\\\ 4 & 3 & -2 \\\\ 3 & -4 & 5\end{array}\right]$ and $C=\left[\begin{array}{ccc}0 & 1 & -2 \\\\ 2 & -1 & 0 \\\\ 0 & 2 & 1\end{array}\right]$, then the matrix $B+D=$
A
$\left[\begin{array}{ccc}-1 & 6 & 3 \\\\ 6 & 2 & -2 \\\\ 3 & -2 & 6\end{array}\right]$
B
$\left[\begin{array}{ccc}-1 & 6 & 3 \\\\ 3 & 2 & -2 \\\\ 1 & -2 & 6\end{array}\right]$
C
$\left[\begin{array}{ccc}3 & 2 & -2 \\\\ 2 & 6 & 3 \\\\ -2 & 3 & 2\end{array}\right]$
D
$\left[\begin{array}{ccc}1 & -2 & 6 \\\\ -2 & 3 & 2 \\\\ 6 & 2 & 1\end{array}\right]$
2
TG EAPCET 2024 (Online) 9th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
If $A$ is square matrix and $A^2+I=2 A$, then $A^9=$
A
$8 A^2-71$
B
$9 A+81$
C
$9 A-8 I$
D
$8 A^2+7 I$
3
TG EAPCET 2024 (Online) 9th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
$\operatorname{det}\left[\begin{array}{ccc}\frac{a^2+b^2}{c} & c & c \\\\ a & \frac{b^2+c^2}{a} & a \\\ b & b & \frac{c^2+a^2}{b}\end{array}\right]=$
A
$(a-b)(b-c)(c-a)$
B
$(a+b)(b+c)(c+a)$
C
$2 a b c$
D
$4 a b c$
4
TG EAPCET 2024 (Online) 9th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

The system of simultaneous linear equations

$$ \begin{aligned} & x-2 y+3 z=4,3 x+y-2 z=7 \\ & 2 x+3 y+z=6 \text { has } \end{aligned} $$

A
infinitely many solutions.
B
no solution.
C
unique solution having $z=2$.
D
unique solution having $z=\frac{1}{2}$.
TS EAMCET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12