1
TG EAPCET 2024 (Online) 9th May Morning Shift
MCQ (Single Correct Answer)
+1
-0
$\operatorname{det}\left[\begin{array}{ccc}\frac{a^2+b^2}{c} & c & c \\\\ a & \frac{b^2+c^2}{a} & a \\\ b & b & \frac{c^2+a^2}{b}\end{array}\right]=$
A
$(a-b)(b-c)(c-a)$
B
$(a+b)(b+c)(c+a)$
C
$2 a b c$
D
$4 a b c$
2
TG EAPCET 2024 (Online) 9th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

The system of simultaneous linear equations

$$ \begin{aligned} & x-2 y+3 z=4,3 x+y-2 z=7 \\ & 2 x+3 y+z=6 \text { has } \end{aligned} $$

A
infinitely many solutions.
B
no solution.
C
unique solution having $z=2$.
D
unique solution having $z=\frac{1}{2}$.
3
TS EAMCET 2023 (Online) 12th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

$$ \left|\begin{array}{ccc} \sqrt{3} & 2 \sqrt{5} & \sqrt{5} \\ \sqrt{15} & 5 & \sqrt{10} \\ 3 & \sqrt{15} & 5 \end{array}\right|= $$

A
$5 \sqrt{2}-3 \sqrt{3}$
B
$5 \sqrt{3}-3 \sqrt{5}$
C
$10 \sqrt{3}-15 \sqrt{2}$
D
$15 \sqrt{2}-25 \sqrt{3}$
4
TS EAMCET 2023 (Online) 12th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

If $A$ is a non-singular matrix such that $(A-2 I)$ $(A-3 I)=0$, then $\frac{1}{5} A+\frac{6}{5} A^{-1}=$

A
0
B
I
C
2I
D
3I
TS EAMCET Subjects
EXAM MAP