1
WB JEE 2024
+1
-0.25

If $$\mathrm{U}_{\mathrm{n}}(\mathrm{n}=1,2)$$ denotes the $$\mathrm{n}^{\text {th }}$$ derivative $$(\mathrm{n}=1,2)$$ of $$\mathrm{U}(x)=\frac{\mathrm{L} x+\mathrm{M}}{x^2-2 \mathrm{~B} x+\mathrm{C}}$$ (L, M, B, C are constants), then $$\mathrm{PU}_2+\mathrm{QU}_1+\mathrm{RU}=0$$, holds for

A
$$\mathrm{P}=x^2-2 \mathrm{~B}, \mathrm{Q}=2 x, \mathrm{R}=3 x$$
B
$$\mathrm{P}=x^2-2 \mathrm{~B} x+\mathrm{C}, \mathrm{Q}=4(x-\mathrm{B}), \mathrm{R}=2$$
C
$$\mathrm{P}=2 x, \mathrm{Q}=2 \mathrm{~B}, \mathrm{R}=2$$
D
$$\mathrm{P}=x^2, \mathrm{Q}=x, \mathrm{R}=3$$
2
WB JEE 2024
+2
-0.5

$$\text { If } y=\tan ^{-1}\left[\frac{\log _e\left(\frac{e}{x^2}\right)}{\log _e\left(e x^2\right)}\right]+\tan ^{-1}\left[\frac{3+2 \log _e x}{1-6 \cdot \log _e x}\right] \text {, then } \frac{d^2 y}{d x^2}=$$

A
2
B
1
C
0
D
$$-$$1
3
WB JEE 2023
+1
-0.25

Suppose $$f:R \to R$$ be given by $$f(x) = \left\{ \matrix{ 1,\,\,\,\,\,\,\,\,\,\,\mathrm{if}\,x = 1 \hfill \cr {e^{({x^{10}} - 1)}} + {(x - 1)^2}\sin {1 \over {x - 1}},\,\mathrm{if}\,x \ne 1 \hfill \cr} \right.$$

then

A
f'(1) does not exist
B
f'(1) exists and is zero
C
f'(1) exist and is 9
D
f'(1) exists and is 10
4
WB JEE 2023
+1
-0.25

Let $${\cos ^{ - 1}}\left( {{y \over b}} \right) = {\log _e}{\left( {{x \over n}} \right)^n}$$, then $$A{y_2} + B{y_1} + Cy = 0$$ is possible for, where $${y_2} = {{{d^2}y} \over {d{x^2}}},{y_1} = {{dy} \over {dx}}$$

A
$$A = 2,B = {x^2},C = n$$
B
$$A = {x^2},B = x,C = {n^2}$$
C
$$A = x,B = 2x,C = 3n + 1$$
D
$$A = {x^2},B = 3x,C = 2n$$
EXAM MAP
Medical
NEET