1
WB JEE 2023
MCQ (Single Correct Answer)
+1
-0.25
Change Language

The function $$y = {e^{kx}}$$ satisfies $$\left( {{{{d^2}y} \over {d{x^2}}} + {{dy} \over {dx}}} \right)\left( {{{dy} \over {dx}} - y} \right) = y{{dy} \over {dx}}$$. It is valid for

A
exactly one value of k.
B
two distinct values of k.
C
three distinct values of k.
D
infinitely many values of k.
2
WB JEE 2023
MCQ (Single Correct Answer)
+1
-0.25
Change Language

If $$y = {\log ^n}x$$, where $${\log ^n}$$ means $${\log _e}{\log _e}{\log _e}\,...$$ (repeated n times), then $$x\log x{\log ^2}x{\log ^3}x\,.....\,{\log ^{n - 1}}x{\log ^n}x{{dy} \over {dx}}$$ is equal to

A
$$\log x$$
B
$$x$$
C
1
D
$${\log ^n}x$$
3
WB JEE 2023
MCQ (Single Correct Answer)
+2
-0.5
Change Language

If $$x = \sin \theta $$ and $$y = \sin k\theta $$, then $$(1 - {x^2}){y_2} - x{y_1} - \alpha y = 0$$, for $$\alpha=$$

A
k
B
$$-$$k
C
$$-$$k$$^2$$
D
k$$^2$$
4
WB JEE 2022
MCQ (Single Correct Answer)
+1
-0.25
Change Language

If $$y = {e^{{{\tan }^{ - 1}}x}}$$, then

A
$$(1 + {x^2}){y_2} + (2x - 1){y_1} = 0$$
B
$$(1 + {x^2}){y_2} + 2xy = 0$$
C
$$(1 - {x^2}){y_2} - {y_1} = 0$$
D
$$(1 + {x^2}){y_2} + 3x{y_1} + 4y = 0$$
WB JEE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12