If ' $f$ ' is the inverse function of ' $g$ ' and $g^{\prime}(x)=\frac{1}{1+x^n}$, then the value of $f^{\prime}(x)$ is
Let $f(x)$ be a second degree polynomial. If $f(1)=f(-1)$ and $p, q, r$ are in A.P., then $f^{\prime}(p), f^{\prime}(q), f^{\prime}(r)$ are
If $$\mathrm{U}_{\mathrm{n}}(\mathrm{n}=1,2)$$ denotes the $$\mathrm{n}^{\text {th }}$$ derivative $$(\mathrm{n}=1,2)$$ of $$\mathrm{U}(x)=\frac{\mathrm{L} x+\mathrm{M}}{x^2-2 \mathrm{~B} x+\mathrm{C}}$$ (L, M, B, C are constants), then $$\mathrm{PU}_2+\mathrm{QU}_1+\mathrm{RU}=0$$, holds for
$$ \text { If } y=\tan ^{-1}\left[\frac{\log _e\left(\frac{e}{x^2}\right)}{\log _e\left(e x^2\right)}\right]+\tan ^{-1}\left[\frac{3+2 \log _e x}{1-6 \cdot \log _e x}\right] \text {, then } \frac{d^2 y}{d x^2}= $$