NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

WB JEE 2022

MCQ (Single Correct Answer)
English
Bengali

Given : The percentage error in the measurements of A, B, C and D are respectively, 4%, 2%, 3% and 1%. The relative error in $$Z = {{{A^4}{B^{{1 \over 3}}}} \over {C{D^{{3 \over 2}}}}}$$ is

A
$${{127} \over 2}\% $$
B
$${{127} \over 5}\% $$
C
$${{127} \over 6}\% $$
D
$${{127} \over 7}\% $$

Explanation

The percentage error in Z is given as

$${{\Delta Z} \over Z}\% = 4{{\Delta A} \over A} + {1 \over 3}{{\Delta B} \over B} + {{\Delta C} \over C} + {3 \over 2}{{\Delta D} \over D}$$

$$ = 4 \times 4 + {1 \over 3} \times 2 + 3 + {3 \over 2} \times 1$$

$$ = 16 + {2 \over 3} + 3 + {3 \over 2}$$

$$ = {{127} \over 6}\% $$

A, B, C ও D -এর পরিমাপের শতকরা ত্রুটি যথাক্রমে 4%, 2%, 3% ও 1% হলে $$Z = {{{A^4}{B^{{1 \over 3}}}} \over {C{D^{{3 \over 2}}}}}$$ এর আপেক্ষিক ত্রুটি হবে

A
$${{127} \over 2}\% $$
B
$${{127} \over 5}\% $$
C
$${{127} \over 6}\% $$
D
$${{127} \over 7}\% $$
2

WB JEE 2021

MCQ (Single Correct Answer)
English
Bengali
From dimensional analysis, the Rydberg constant can be expressed in terms of electric charge (e), mass (m) and Planck constant (h) as [consider $${1 \over {4\pi {\varepsilon _0}}} \equiv 1$$ unit]
A
$${{{h^2}} \over {m{e^2}}}$$
B
$${{m{e^4}} \over {{h^2}}}$$
C
$${{{m^2}{e^4}} \over {{h^2}}}$$
D
$${{m{e^2}} \over {{h^2}}}$$

Explanation

According to question, from dimensional analysis,

R $$\propto$$ eambhc

$$\Rightarrow$$ R = keambhc

Using dimensional formula of R, e, m and h,

$$[{M^0}{L^{ - 1}}{T^0}] = {[{M^{1/2}}{L^{3/2}}{T^{ - 1}}]^a}{[M]^b}{[M{L^2}{T^{ - 1}}]^c}$$

{Since, $$F = {1 \over {4\pi {\varepsilon _0}}}\,.\,{{{e^2}} \over {{r^2}}} = {{{e^2}} \over {{r^2}}}$$

$$ \Rightarrow {e^2} = F{r^2}$$

$$[e] = {[F{r^2}]^{1/2}} = {[ML{T^{ - 2}}\,.\,{L^2}]^{1/2}} = [{M^{1/2}}{L^{3/2}}{T^{ - 1}}]$$}

$$ \Rightarrow [{M^0}{L^{ - 1}}{T^0}] = [{M^{a/2}}{L^{3a/2}}{T^{ - a}}][{M^b}][{M^c}{L^{2c}}{T^{ - c}}]$$

$$ \Rightarrow [{M^0}{L^{ - 1}}{T^0}] = [{M^{{a \over 2} + b + c}}{L^{{{3a} \over 2} + 2c}}{T^{ - a - c}}]$$

$$\therefore$$ $${a \over 2} + b + c = 0$$ .... (i)

$${{3a} \over 2} + 2c = - 1$$ .... (ii)

$$-$$a $$-$$c = 0 .... (iii)

On solving Eqs. (i), (ii) and (iii), we get

a = 2, b = 1, c = $$-$$2

$$\therefore$$ R $$\propto$$ e2mh$$-$$2

$$ \Rightarrow R \propto {{{e^2}m} \over {{h^2}}}$$
মাত্রার নীতি অনুযায়ী, রিডবার্গ ধ্রুবককে ইলেকট্রনের আধান (e), ভর (m) ও প্লাঙ্কের ধ্রুবকের (h) সমন্বয়ে প্রকাশ করলে তার রাশিমালা হবে ( $${1 \over {4\pi {\varepsilon _0}}} \equiv 1$$ একক ধরে নাও)
A
$${{{h^2}} \over {m{e^2}}}$$
B
$${{m{e^4}} \over {{h^2}}}$$
C
$${{{m^2}{e^4}} \over {{h^2}}}$$
D
$${{m{e^2}} \over {{h^2}}}$$

Explanation

প্রশ্ন অনুসারে, মাত্রিক বিশ্লেষণ থেকে,

R $$\propto$$ eambhc

$$\Rightarrow$$ R = keambhc

R, e, m ও h এর মাত্রিক সূত্র ব্যবহার করে,

$$[{M^0}{L^{ - 1}}{T^0}] = {[{M^{1/2}}{L^{3/2}}{T^{ - 1}}]^a}{[M]^b}{[M{L^2}{T^{ - 1}}]^c}$$

{যেহেতু, $$F = {1 \over {4\pi {\varepsilon _0}}}\,.\,{{{e^2}} \over {{r^2}}} = {{{e^2}} \over {{r^2}}}$$

$$ \Rightarrow {e^2} = F{r^2}$$

$$[e] = {[F{r^2}]^{1/2}} = {[ML{T^{ - 2}}\,.\,{L^2}]^{1/2}} = [{M^{1/2}}{L^{3/2}}{T^{ - 1}}]$$}

$$ \Rightarrow [{M^0}{L^{ - 1}}{T^0}] = [{M^{a/2}}{L^{3a/2}}{T^{ - a}}][{M^b}][{M^c}{L^{2c}}{T^{ - c}}]$$

$$ \Rightarrow [{M^0}{L^{ - 1}}{T^0}] = [{M^{{a \over 2} + b + c}}{L^{{{3a} \over 2} + 2c}}{T^{ - a - c}}]$$

$$\therefore$$ $${a \over 2} + b + c = 0$$ .... (i)

$${{3a} \over 2} + 2c = - 1$$ .... (ii)

$$-$$a $$-$$c = 0 .... (iii)

সমীকরণ (i), (ii) এবং (iii) সমাধান করার সময়, আমরা পাই

a = 2, b = 1, c = $$-$$2

$$\therefore$$ R $$\propto$$ e2mh$$-$$2

$$ \Rightarrow R \propto {{{e^2}m} \over {{h^2}}}$$
3

WB JEE 2020

MCQ (Single Correct Answer)
English
Bengali
The frequency v of the radiation emitted by an atom when an electron jumps from one orbit to another is given by v = k$$\delta $$E, where k is a constant and $$\delta $$E is the change in energy level due to the transition. Then, dimension of k is
A
$${\left[ {M{L^2}{T^{ - 2}}} \right]}$$
B
the same dimension of angular momentum
C
$${\left[ {M{L^2}{T^{ - 1}}} \right]}$$
D
$$\left[ {{M^{ - 1}}{L^{ - 2}}T} \right]$$

Explanation

Given, frequency, v = K$$\delta $$E

where, k is constant and $$\delta $$E is change in energy.

$$ \Rightarrow $$ $$k = {v \over {\delta E}} = {v \over {hv}}$$ .....................[$$ \because $$$$\delta $$E = hv]

= $${1 \over h}$$

$$ \because $$ We know that, energy, E = hv

$$ \Rightarrow $$ $$h = {E \over v} = {{M{L^2}{T^{ - 2}}} \over {{T^{ - 1}}}}$$

h = [ML2T-1]

$$ \therefore $$ Dimension of $$k = {1 \over h} = {1 \over {\left[ {M{L^2}{T^{ - 1}}} \right]}} = \left[ {{M^{ - 1}}{L^{ - 2}}T} \right]$$

কোন পরমাণুর মধ্যে একটি ইলেকট্রন যখন এক কক্ষ থেকে অন্য কক্ষে সংক্রমিত হয় তখন নিঃসৃত বিকিরণের কম্পাঙ্ক যে সমীকরণ মেনে চলে তা হল v = k $$\delta$$E, যেখানে k একটি ধ্রুবক এবং $$\delta$$E হল ওই দুই কক্ষের শক্তির মানের পার্থক্য। তাহলে k-এর মাত্রা হবে --

A
ML2T$$-$$2
B
কৌণিক ভরবেগের মাত্রার সমান
C
ML2T$$-$$1
D
M$$-$$1L$$-$$2T

Explanation

শর্তানুসারে,

v = K$$\delta$$E

$$ \Rightarrow K = {v \over {\delta E}}$$

$$ \Rightarrow [K] = {{[v]} \over {[\delta E]}} = {{[{T^{ - 1}}]} \over {[M{L^2}{T^{ - 2}}]}} = [{M^{ - 1}}{L^{ - 2}}T]$$

$$\Rightarrow$$ Option (d) সঠিক।

4

WB JEE 2019

MCQ (Single Correct Answer)
English
Bengali
The density of the material of a cube can be estimated by measuring its mass and the length of one of its sides. If the maximum error in the measurement of mass and length are 0.3% and 0.2% respectively, the maximum error in the estimation of the density of the cube is approximately
A
1.1%
B
0.5%
C
0.9%
D
0.7%

Explanation

Given,

Maximum error in the measurement of mass = 0.3% Maximum error in the measurement of length = 0.2%

We known that,

Error in density is given as,

Density, $$\rho = {{mass(m)} \over {volume(v)}} = {m \over {{L^3}}}$$

where, L = side of cube

Error in density is given as,

$$\left( {{{\Delta \rho } \over \rho }} \right) = {{\Delta m} \over m} + {{3\Delta L} \over L}$$

or $$\left( {{{\Delta \rho } \over \rho }} \right) \times 100 = \left( {{{\Delta m} \over m} + {{3\Delta L} \over L}} \right) \times 100$$

Substituting the given values, we get

$${\left( {{{\Delta \rho } \over \rho }} \right)_{\max }} = (0.3\% + 3(0.2)\% ) = 0.3\% + 0.6\% $$

$$ \therefore $$ Maximum percentage error measurement of density $${\left( {{{\Delta \rho } \over \rho }} \right)_{\max }} = 0.9\% $$

একটি ঘনকের ভর এবং কোন একটি বাহুর দৈর্ঘ্য পরিমাপ করে ঘনকটির উপাদানের ঘনত্ব হিসাব করা যায়। যদি ভর এবং দৈর্ঘ্য পরিমাপের সর্বাধিক ত্রুটি যথাক্রমে 0.3% এবং 0.2% হয়, তবে ঘনকটির ঘনত্ব নির্ণয়ে সর্বাধিক ত্রুটি হয় প্রায় -

A
1.1%
B
0.5%
C
0.9%
D
0.7%

Explanation

ঘনত্ব ($$\rho$$) $$ = {m \over v} = {m \over {{L^3}}}$$

$$\therefore$$ $${{\Delta \rho } \over \rho } \times 100\% = \left( {{{\Delta m} \over m} + {{3\Delta L} \over L}} \right) \times 100\% $$

$$ = [0.3 + 3(0.2)]\% = 0.9\% $$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12