1
WB JEE 2019
+1
-0.25
Let P(4, 3) be a point on the hyperbola $${{{x^2}} \over {{a^2}}} - {{{y^2}} \over {{b^2}}} = 1$$. If the normal at P intersects the X-axis at (16, 0), then the eccentricity of the hyperbola is
A
$${{\sqrt 5 } \over 2}$$
B
2
C
$${\sqrt 2 }$$
D
$${\sqrt 3 }$$
2
WB JEE 2019
+1
-0.25
For the hyperbola $${{{x^2}} \over {{{\cos }^2}\alpha }} - {{{y^2}} \over {{{\sin }^2}\alpha }} = 1$$, which of the following remains fixed when $$\alpha$$ varies?
A
directrix
B
vertices
C
foci
D
eccentricity
3
WB JEE 2019
+1
-0.25
S and T are the foci of an ellipse and B is the end point of the minor axis. If STB is equilateral triangle, the eccentricity of the ellipse is
A
$${1 \over 4}$$
B
$${1 \over 3}$$
C
$${1 \over 2}$$
D
$${2 \over 3}$$
4
WB JEE 2019
+1
-0.25
The equation of the directrices of the hyperbola $$3{x^2} - 3{y^2} - 18x + 12y + 2 = 0$$ is
A
$$x = 3 \pm \sqrt {{{13} \over 6}}$$
B
$$x = 3 \pm \sqrt {{{6} \over 13}}$$
C
$$x = 6 \pm \sqrt {{{13} \over 3}}$$
D
$$x = 6 \pm \sqrt {{{3} \over 13}}$$
EXAM MAP
Medical
NEET