1
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

A pair of tangents are drawn to the circle $x^2+y^2+6 x-4 y-12=0$ from a point $\mathrm{P}(-4,-5)$, then the area enclosed between these tangents and the area of the circle is

A
$25\left(\frac{4+\pi}{4}\right)$ sq. units
B
$\quad 25\left(\frac{4+\pi}{2}\right)$ sq. units
C
$25\left(\frac{4-\pi}{2}\right)$ sq. units
D
$\quad 25\left(\frac{4-\pi}{4}\right)$ sq. units
2
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\bar{a}, \bar{b}, \bar{c}$ are non coplanar unit vectors such that $\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=\frac{\overline{\mathrm{b}}+\overline{\mathrm{c}}}{\sqrt{2}}$ then the angle between $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ is

A
$\frac{\pi}{2}$
B
$\frac{\pi}{4}$
C
$\frac{\pi}{3}$
D
$\frac{3 \pi}{4}$
3
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The joint equation of the bisector of the angle between the lines $2 x^2+11 x y+3 y^2=0$ is

A
$11 x^2+2 x y-11 y^2=0$
B
$x^2+2 x y-y^2=0$
C
$3 x^2-11 x y+2 y^2=0$
D
$11 x^2-2 x y-11 y^2=0$
4
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If a random variable X has the following probability distribution of X

$$ \begin{array}{|l|c|c|c|c|c|c|c|c|} \hline \mathrm{X}=x & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline \mathrm{P}(\mathrm{X}=x) & 0 & \mathrm{k} & 2 \mathrm{k} & 2 \mathrm{k} & 3 \mathrm{k} & \mathrm{k}^2 & 2 \mathrm{k}^2 & 7 \mathrm{k}^2+\mathrm{k} \\ \hline \end{array} $$

Then $P(x \geq 6)=$

A
$\frac{19}{100}$
B
$\frac{81}{100}$
C
$\frac{9}{100}$
D
$\frac{91}{100}$
MHT CET Papers
EXAM MAP