A pair of tangents are drawn to the circle $x^2+y^2+6 x-4 y-12=0$ from a point $\mathrm{P}(-4,-5)$, then the area enclosed between these tangents and the area of the circle is
If $\bar{a}, \bar{b}, \bar{c}$ are non coplanar unit vectors such that $\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=\frac{\overline{\mathrm{b}}+\overline{\mathrm{c}}}{\sqrt{2}}$ then the angle between $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ is
The joint equation of the bisector of the angle between the lines $2 x^2+11 x y+3 y^2=0$ is
If a random variable X has the following probability distribution of X
$$ \begin{array}{|l|c|c|c|c|c|c|c|c|} \hline \mathrm{X}=x & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline \mathrm{P}(\mathrm{X}=x) & 0 & \mathrm{k} & 2 \mathrm{k} & 2 \mathrm{k} & 3 \mathrm{k} & \mathrm{k}^2 & 2 \mathrm{k}^2 & 7 \mathrm{k}^2+\mathrm{k} \\ \hline \end{array} $$
Then $P(x \geq 6)=$