1
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

$\int \mathrm{e}^x\left(\frac{x+5}{(x+6)^2}\right) \mathrm{d} x$ is

A
$\frac{\mathrm{e}^x}{(x+6)^2}+\mathrm{c}$, where c is the constant of integration.
B
$\frac{\mathrm{e}^x}{x+5}+\mathrm{c}$, where c is the constant of integration.
C
$\frac{\mathrm{e}^x}{(x+5)^2}+\mathrm{c}$, where c is the constant of integration.
D
$\frac{\mathrm{e}^x}{x+6}+\mathrm{c}$, where c is the constant of integration.
2
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The principal solution of of $(5+3 \sin \theta)(2 \cos \theta+1)=0$ are

A
$\frac{-\pi}{3}, \frac{2 \pi}{3}$
B
$\frac{2 \pi}{3}, \frac{5 \pi}{3}$
C
$\frac{2 \pi}{3}, \frac{4 \pi}{3}$
D
$\frac{2 \pi}{3}, \frac{7 \pi}{3}$
3
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let X denote the number of hours you study on a Sunday. It is known that

$$ \mathrm{P}(\mathrm{X}=x)=\left\{\begin{array}{cc} 0.1 & , \text { if } x=0 \\ \mathrm{k} x & , \text { if } x=1 \text { or } 2 \\ \mathrm{k}(5-x) & , \text { if } x=3 \text { or } 4 \\ 0 & , \text { otherwise } \end{array}\right. $$

where k is constant. Then the probability that you study at least two hours on a Sunday is

A
0.55
B
0.15
C
0.75
D
0.3
4
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The principal value of $\cos ^{-1}\left[\frac{1}{\sqrt{2}}\left(\cos \frac{9 \pi}{10}-\sin \frac{9 \pi}{10}\right)\right]$ is

A
$\frac{3 \pi}{20}$
B
$\frac{17 \pi}{20}$
C
$\frac{7 \pi}{10}$
D
$\frac{\pi}{10}$
MHT CET Papers
EXAM MAP