1
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0
The solution set of the constraints $|x-y| \leq 1, x, y \geq 0$ is
A
a finite set
B
an unbounded set
C
a convex polygon
D
such that feasible region does not exist
2
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The lines $\frac{x-0}{1}=\frac{y-2}{2}=\frac{z+3}{\lambda}$ and $\frac{x-2}{2}=\frac{y-6}{3}=\frac{z-3}{\lambda}$ are coplanar and $p$ is the plane containing these lines, then which of following point does not lie on the plane.

A
$(1,6,4)$
B
$(2,8,7)$
C
$(1,2,3)$
D
$(4,10,9)$
3
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int_1^3 \frac{\log x^2}{\log \left(16 x^2-8 x^3+x^4\right)} d x= $$

A
1
B
3
C
$\quad \log 2$
D
$\frac{1}{2}$
4
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\frac{x^2}{\mathrm{a}^2}+\frac{y^2}{\mathrm{~b}^2}=1$, then $\frac{\mathrm{d}^2 y}{\mathrm{~d} x^2}$ is

A
$\frac{-b^4}{a}$
B
$\frac{\mathrm{b}^4}{\mathrm{a}^2}$
C
$\frac{-\mathrm{b}^4}{y^3}$
D
$\frac{-b^4}{a^2 \cdot y^3}$
MHT CET Papers
EXAM MAP