1
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The negation of the statement "The triangle is an equilateral or isosceles triangle and the triangle is not isosceles and it is right angled" is

A

The triangle is not an equilateral or not an isosceles triangle or it is not an isosceles or it is not right angled

B

The triangle is not an equilateral triangle or not isosceles triangle and it is isosceles or it is not right angled

C

If the triangle is an equilateral triangle or an isosceles triangle then it is an isosceles triangle or not right angled

D

If the triangle is an equilateral triangle or an isosceles triangle then it is not isosceles triangle and it is not right angled

2
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

$\mathrm{f}(x)=\frac{x}{2}+\frac{2}{x}, x \neq 0$ is strictly decreasing in

A
$(2,3)$
B
$(1,3)$
C
$(-2,2)$
D
$(1,2)$
3
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=\frac{\sin \left(\pi \cos ^2 x\right)}{3 x^2}, x \neq 0$ is continuous at $x=0$ then $\mathrm{f}(0)=$

A
0
B
$\frac{\pi}{3}$
C
$\frac{-\pi}{3}$
D
$\frac{3}{\pi}$
4
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $z$ be the complex number with $\operatorname{Im}(z)=10$ and satisfying $\frac{2 \mathrm{z}-\mathrm{n}}{2 \mathrm{z}+\mathrm{n}}=2 \mathrm{i}-1$, where $\mathrm{i}=\sqrt{-1}$, for some natural number ' $n$ ' then

A
$\mathrm{n}=20$ and $\operatorname{Re}(\mathrm{z})=10$
B
$\mathrm{n}=20$ and $\operatorname{Re}(\mathrm{z})=-10$
C
$\mathrm{n}=40$ and $\operatorname{Re}(\mathrm{z})=10$
D
$\mathrm{n}=40$ and $\operatorname{Re}(\mathrm{z})=-10$
MHT CET Papers
EXAM MAP