1
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The area bounded by the parabolas $y=9 x^2, y=\frac{x^2}{16}$ and the line $y=1$ is

A
$\frac{22}{9}$ sq. units
B
$\frac{44}{9}$ sq. units
C
$\frac{8}{9}$ sq. units
D
$\frac{26}{9}$ sq. units
2
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

$\int \frac{\mathrm{d} x}{3 \cos 2 x+5}$ equals

A
$\frac{1}{2} \tan ^{-1}(\tan x)+\mathrm{c}$, where c is the constant of integration.
B
$\frac{1}{2} \tan ^{-1}\left(\frac{\tan x}{2}\right)+\mathrm{c}$, where c is the constant of integration.
C
$\frac{1}{4} \tan ^{-1}\left(\frac{1}{2} \tan x\right)+\mathrm{c}$, where c is the constant of integration.
D
$\frac{1}{4} \tan ^{-1}(\tan x)+\mathrm{c}$, where c is the constant of integration.
3
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The solution of the equation $x^2 y-x^3 \frac{\mathrm{~d} y}{\mathrm{~d} x}=y^4 \cos x$, where $y(0)=1$, is

A
$y^3=3 x^2 \sin x$
B
$x^3=3 y^3 \sin x$
C
$x^3=y^3 \sin x$
D
$y^3=4 x^3 \sin x$
4
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the statements $p, q$ and $r$ are true, false and true statements respectively, then the truth value of the statement pattern $[\sim \mathrm{q} \wedge(\mathrm{p} \vee \sim \mathrm{q}) \wedge \sim \mathrm{r}] \vee \mathrm{p}$ and the truth value of its dual statement respectively are

A
$\mathrm{T}, \mathrm{T}$
B
$\mathrm{F}, \mathrm{T}$
C
$T, F$
D
$\mathrm{F}, \mathrm{F}$
MHT CET Papers
EXAM MAP