1
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int \frac{1}{\mathrm{e}^x+1} \mathrm{~d} x= $$

A
$x+\log \left(\mathrm{e}^x+1\right)+\mathrm{c}$, where c is the constant of integration.
B
$x-\log \left(\mathrm{e}^x+1\right)+\mathrm{c}$, where c is the constant of integration.
C
$\log \left(\mathrm{e}^x-1\right)+x+\mathrm{c}$, where c is the constant of integration.
D
$\log \left(\mathrm{e}^{\mathrm{x}}-1\right)-x+\mathrm{c}$, where c is the constant of integration.
2
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $y=\tan ^{-1}\left(\frac{4 x}{1+5 x^2}\right)+\cot ^{-1}\left(\frac{3-2 x}{2+3 x}\right)$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is equal to

A
$\frac{5}{1+25 x^2}$
B
$\frac{1}{1+25 x^2}$
C
$\frac{1}{1+5 x^2}$
D
$\frac{5}{1+5 x^2}$
3
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation $x \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 y$ represents ________

A
a family of circles with radius c .
B
a family of parabolas with vertex at the origin and axis along the positive Y -axis
C
a family of parabolas with vertex at origin and axis along the positive X -axis
D
a family of ellipses
4
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

$\int \mathrm{e}^x\left(\frac{x+5}{(x+6)^2}\right) \mathrm{d} x$ is

A
$\frac{\mathrm{e}^x}{(x+6)^2}+\mathrm{c}$, where c is the constant of integration.
B
$\frac{\mathrm{e}^x}{x+5}+\mathrm{c}$, where c is the constant of integration.
C
$\frac{\mathrm{e}^x}{(x+5)^2}+\mathrm{c}$, where c is the constant of integration.
D
$\frac{\mathrm{e}^x}{x+6}+\mathrm{c}$, where c is the constant of integration.
MHT CET Papers
EXAM MAP