1
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

$y=\mathrm{e}^x(\mathrm{~A} \cos x+\mathrm{B} \sin x)$ is the solution of the differential equation

A
$x^2 \frac{\mathrm{~d}^2 y}{\mathrm{~d} x^2}+\left(1+y^2\right)=0$
B
$\frac{\mathrm{d}^2 y}{\mathrm{~d} x^2}-\frac{\mathrm{d} y}{\mathrm{~d} x}+y=0$
C
$\frac{\mathrm{d}^2 y}{\mathrm{~d} x^2}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=0$
D
$x \frac{\mathrm{~d}^2 y}{\mathrm{~d} x^2}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=0$
2
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

A family has 3 children. The probability that all the three children are girls, given that at least one of them is a girl is

A
$\frac{7}{8}$
B
$\frac{1}{8}$
C
$\frac{1}{7}$
D
$\frac{2}{7}$
3
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

In a triangle ABC , with usual notations. $\frac{2 \cos \mathrm{~A}}{\mathrm{a}}+\frac{\cos \mathrm{B}}{\mathrm{b}}+\frac{2 \cos \mathrm{C}}{\mathrm{c}}=\frac{\mathrm{a}}{\mathrm{bc}}+\frac{\mathrm{b}}{\mathrm{ca}}$. Then $\angle \mathrm{A}=$

A
$\frac{\pi}{4}$
B
$\frac{\pi}{6}$
C
$\frac{\pi}{2}$
D
$\frac{\pi}{3}$
4
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

A line passes through $\mathrm{P}(-4,1)$ and meets the co-ordinate axes at points A and B . If P divides the segment AB internally in the ratio $1: 2$, then the equation of the line is

A
$x-2 y+6=0$
B
$x+10 y-6=0$
C
$2 x+y+4=0$
D
$x-y+5=0$
MHT CET Papers
EXAM MAP