1
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int\limits_0^1 \frac{1}{2+\sqrt{x}} d x= $$

A
$2 \log \left(\frac{2 \mathrm{e}}{3}\right)$
B
$2 \log \left(\frac{4 \mathrm{e}}{9}\right)$
C
$\log \left(\frac{2 \mathrm{e}}{3}\right)$
D
$\log \left(\frac{4 e}{9}\right)$
2
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let M and N be foots of the perpendiculars drawn from the point $\mathrm{P}(\mathrm{a}, \mathrm{a}, \mathrm{a})$ on the lines $x-y=0, \mathrm{z}=1$ and $x+y=0, \mathrm{z}=-1$ respectively and if $\angle \mathrm{MPN}=90^{\circ}$ then $\mathrm{a}^2=$

A
1
B
4
C
6
D
9
3
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $y=\log _3\left(\log _3 x\right)$ then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $x=3$ is $\ldots \ldots$

A
$\frac{1}{3}(\log 3)^{-3}$
B
$\frac{1}{3}(\log 3)$
C
$\frac{1}{3} \frac{1}{(\log 3)^{-3}}$
D
$\quad \frac{1}{3}(\log 3)^{-2}$
4
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If in triangle ABC , with usual notations $\sin \frac{\mathrm{A}}{2} \cdot \sin \frac{\mathrm{C}}{2}=\sin \frac{\mathrm{B}}{2}$ and 2 s is the perimeter of the triangle, then the value of $s$ is

A
2 b
B
b
C
$4 b$
D
$\frac{\mathrm{b}}{2}$
MHT CET Papers
EXAM MAP