1
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If a random variable X has the following probability distribution of X

$$ \begin{array}{|l|c|c|c|c|c|c|c|c|} \hline \mathrm{X}=x & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline \mathrm{P}(\mathrm{X}=x) & 0 & \mathrm{k} & 2 \mathrm{k} & 2 \mathrm{k} & 3 \mathrm{k} & \mathrm{k}^2 & 2 \mathrm{k}^2 & 7 \mathrm{k}^2+\mathrm{k} \\ \hline \end{array} $$

Then $P(x \geq 6)=$

A
$\frac{19}{100}$
B
$\frac{81}{100}$
C
$\frac{9}{100}$
D
$\frac{91}{100}$
2
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int\limits_0^1 \frac{1}{2+\sqrt{x}} d x= $$

A
$2 \log \left(\frac{2 \mathrm{e}}{3}\right)$
B
$2 \log \left(\frac{4 \mathrm{e}}{9}\right)$
C
$\log \left(\frac{2 \mathrm{e}}{3}\right)$
D
$\log \left(\frac{4 e}{9}\right)$
3
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let M and N be foots of the perpendiculars drawn from the point $\mathrm{P}(\mathrm{a}, \mathrm{a}, \mathrm{a})$ on the lines $x-y=0, \mathrm{z}=1$ and $x+y=0, \mathrm{z}=-1$ respectively and if $\angle \mathrm{MPN}=90^{\circ}$ then $\mathrm{a}^2=$

A
1
B
4
C
6
D
9
4
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $y=\log _3\left(\log _3 x\right)$ then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $x=3$ is $\ldots \ldots$

A
$\frac{1}{3}(\log 3)^{-3}$
B
$\frac{1}{3}(\log 3)$
C
$\frac{1}{3} \frac{1}{(\log 3)^{-3}}$
D
$\quad \frac{1}{3}(\log 3)^{-2}$
MHT CET Papers
EXAM MAP