1
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If Rolle's theorem holds for the function $x^3+\mathrm{a} x^2+\mathrm{b} x, 1 \leq x \leq 2$ at the point $\frac{4}{3}$, then the values of $a$ and $b$ are respectively

A
5,8
B
$-8,5$
C
$8,-5$
D
$-5,8$
2
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int \frac{1}{\mathrm{e}^x+1} \mathrm{~d} x= $$

A
$x+\log \left(\mathrm{e}^x+1\right)+\mathrm{c}$, where c is the constant of integration.
B
$x-\log \left(\mathrm{e}^x+1\right)+\mathrm{c}$, where c is the constant of integration.
C
$\log \left(\mathrm{e}^x-1\right)+x+\mathrm{c}$, where c is the constant of integration.
D
$\log \left(\mathrm{e}^{\mathrm{x}}-1\right)-x+\mathrm{c}$, where c is the constant of integration.
3
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $y=\tan ^{-1}\left(\frac{4 x}{1+5 x^2}\right)+\cot ^{-1}\left(\frac{3-2 x}{2+3 x}\right)$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is equal to

A
$\frac{5}{1+25 x^2}$
B
$\frac{1}{1+25 x^2}$
C
$\frac{1}{1+5 x^2}$
D
$\frac{5}{1+5 x^2}$
4
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation $x \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 y$ represents ________

A
a family of circles with radius c .
B
a family of parabolas with vertex at the origin and axis along the positive Y -axis
C
a family of parabolas with vertex at origin and axis along the positive X -axis
D
a family of ellipses
MHT CET Papers
EXAM MAP