1
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The angle between the lines whose direction cosines are $\frac{-\sqrt{3}}{4}, \frac{1}{4}, \frac{-\sqrt{3}}{2}$ and $\frac{-\sqrt{3}}{4}, \frac{1}{4}, \frac{\sqrt{3}}{2}$ is

A
$90^{\circ}$
B
$120^{\circ}$
C
$45^{\circ}$
D
$30^{\circ}$
2
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\sin \left(\frac{\pi}{4} \cot \theta\right)=\cos \left(\frac{\pi}{4} \tan \theta\right)$, then the general solution of $\theta$ is

A
$n \pi+\frac{\pi}{4}, n \in \mathbb{Z}$
B
$\quad n \pi+(-1)^n \frac{\pi}{6}, n \in \mathbb{Z}$
C
$2 \mathrm{n} \pi \pm \frac{\pi}{4}, \mathrm{n} \in \mathbb{Z}$
D
$\quad 2 \mathrm{n} \pi \pm 3 \frac{\pi}{4}, \mathrm{n} \in \mathbb{Z}$
3
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation of all circles having their centres on the line $y=5$ and touching ( X -axis) is $\qquad$

A
$\quad(5-y) \frac{\mathrm{d} y}{\mathrm{~d} x}+y^2-10 y=0$
B
$\quad(5-y)^2 \frac{\mathrm{~d}^2 y}{\mathrm{~d} x^2}+y^2-10 y=0$
C
$\quad(5-y) \frac{\mathrm{d} y}{\mathrm{~d} x}+y-10=0$
D
$\quad(5-y)^2\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^2+y^2-10 y=0$
4
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int_0^{\frac{\pi}{4}} \frac{\cos ^2 x \sin ^2 x}{\cos ^3 x+\sin ^3 x} d x= $$

A
$\frac{1}{3}$
B
$\frac{-1}{3}$
C
$\frac{1}{6}$
D
$\frac{-1}{6}$
MHT CET Papers
EXAM MAP