1
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The locus of the points represented by $|z+3|-|z-3|=6$, where $z$ is a complex number, is ….

A
Circle with radius 1 unit
B
Straight line with slope 1.
C
Parabola with focus $(1,0)$
D
X -axis
2
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The locus of point of intersection of the tangents to the circle $x^2+y^2=16$, such that the angle between them is $60^{\circ}$, is

A
$x^2+y^2=4$
B
$x^2+y^2=64$
C
$x^2+y^2=32$
D
$x^2+y^2=48$
3
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

A random variable, $X$ has p.m.f. $\mathrm{P}(\mathrm{X}=x)=\frac{{ }^4 \mathrm{C}_x}{2^4}, x=0,1,2,3,4$ and $\mu$ and $\sigma^2$ are mean and variance respectively of random variable X , then

A
$\mu=2, \sigma^2=4$
B
$\quad \mu=2, \sigma^2=1$
C
$\mu=3, \sigma^2=4$
D
$\quad \mu=2, \sigma^2=5$
4
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \text { The c.d.f. of a discrete random variable } \mathrm{X} \text { is } $$

$$ \begin{array}{|c|c|c|c|c|c|c|c|c|} \hline \mathrm{X} & -3 & -1 & 0 & 1 & 3 & 5 & 7 & 9 \\ \hline \mathrm{~F}(\mathrm{X}=x) & 0.1 & 0.3 & 0.5 & 0.65 & 0.75 & 0.85 & 0.90 & 1 \\ \hline \end{array} $$

Then $\frac{P[X=-3]}{P[X<0]}=$

A
$\frac{1}{4}$
B
$\frac{1}{3}$
C
$\frac{1}{6}$
D
$\frac{1}{7}$
MHT CET Papers
EXAM MAP