1
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let A be a non-singular matrix of order n and $|A|=k$, then $(\operatorname{adj} A)^{-1}$ is

A
$\frac{\mathrm{A}}{\mathrm{k}}$
B
$\quad \mathrm{k}^{\mathrm{n}-1}(\operatorname{adj} \mathrm{~A})$
C
$\mathrm{k}^{n-2} \mathrm{~A}$
D
kA
2
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $f(x)= \begin{cases}\frac{8^x-4^x-2^x+1^x}{x^2}, & \text { if } x>0 \\ \mathrm{e}^x \sin x+\mathrm{i} x+\lambda \log 4, & \text { if } x \leqslant 0, \mathrm{i} \in \mathbb{R}\end{cases}$ continuous at $x=0$, then the value of $500 \mathrm{e}^\lambda$ is

A
1000
B
2000
C
4000
D
3000
3
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0
If $\sqrt{\log _3 x^{16}}+9 \log _{27} \sqrt[3]{\frac{3}{x}}=5$, then $x=\ldots$.
A
81
B
$\frac{1}{405}$
C
27
D
405
4
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The line passing through the point $(5,1, a)$ and $(3, \mathrm{~b}, 1)$ crosses the $y \mathrm{z}$-plane at $\left(0, \frac{17}{2}, \frac{-13}{2}\right)$, then the value of $2 a+3 b$ is

A
10
B
12
C
22
D
24
MHT CET Papers
EXAM MAP