1
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If ${ }^{n+4} C_{n+1}-{ }^{n+3} C_n=15(n+2)$, then $n=$

A
15
B
23
C
21
D
27
2
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The correct simplified circuit diagram for the logical statement $[\{\mathrm{q} \wedge(\sim \mathrm{q} \vee \mathrm{r})\} \wedge\{\sim \mathrm{p} \vee(\mathrm{p} \wedge \sim \mathrm{r})\}] \vee(\mathrm{p} \wedge \mathrm{r})$ Where $p, q, r$ represents switches $s_1, s_2, s_3$ respectively.

A
MHT CET 2025 21st April Evening Shift Mathematics - Mathematical Reasoning Question 1 English Option 1
B
MHT CET 2025 21st April Evening Shift Mathematics - Mathematical Reasoning Question 1 English Option 2
C
MHT CET 2025 21st April Evening Shift Mathematics - Mathematical Reasoning Question 1 English Option 3
D
MHT CET 2025 21st April Evening Shift Mathematics - Mathematical Reasoning Question 1 English Option 4
3
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \mathop {\lim }\limits_{n \to \infty }\left[\frac{1}{1-n^4}+\frac{8}{1-n^4}+\ldots \ldots \ldots \ldots .+\frac{n^3}{1-n^4}\right]= $$

A
$\frac{1}{4}$
B
$\frac{1}{2}$
C
$-\frac{1}{2}$
D
$-\frac{1}{4}$
4
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $f(\theta)=\cos \theta_1 \cdot \cos \theta_2 \cdot \cos \theta_3$ .............. $\cos \theta_n$, then $\tan \theta_1+\tan \theta_2+\tan \theta_3+$. ............ $+\tan \theta_{\mathrm{n}}=$

A
$\frac{-\mathrm{f}^{\prime}(\theta)}{\mathrm{f}(\theta)}$
B
$\frac{\mathrm{f}^{\prime}(\theta)}{\mathrm{f}(\theta)}$
C
$\frac{-\mathrm{f}^{\prime \prime}(\theta)}{\mathrm{f}^{\prime}(\theta)}$
D
$\frac{\mathrm{f}^{\prime \prime}(\theta)}{\mathrm{f}^{\prime}(\theta)}$
MHT CET Papers
EXAM MAP