1
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \text { The c.d.f. of a discrete random variable } \mathrm{X} \text { is } $$

$$ \begin{array}{|c|c|c|c|c|c|c|c|c|} \hline \mathrm{X} & -3 & -1 & 0 & 1 & 3 & 5 & 7 & 9 \\ \hline \mathrm{~F}(\mathrm{X}=x) & 0.1 & 0.3 & 0.5 & 0.65 & 0.75 & 0.85 & 0.90 & 1 \\ \hline \end{array} $$

Then $\frac{P[X=-3]}{P[X<0]}=$

A
$\frac{1}{4}$
B
$\frac{1}{3}$
C
$\frac{1}{6}$
D
$\frac{1}{7}$
2
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The distance between the lines represented by $16 x^2+9 y^2+48 x-24 x y-36 y+35=0$ is ......... units

A
$\frac{2}{5}$
B
$\frac{35}{2}$
C
$\frac{5}{2}$
D
$\frac{7}{5}$
3
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\tan 20^{\circ} \tan 80^{\circ} \cot 50^{\circ}=$

A
$\sqrt{3}$
B
$\frac{1}{\sqrt{3}}$
C
$\frac{1}{2 \sqrt{3}}$
D
$2 \sqrt{3}$
4
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the curve passing through the origin and satisfying the equation $\left(1+x^2\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+2 x y=4 x^2$, is

A
$3\left(1+x^2\right) y=4 x^3$
B
$3\left(1-x^2\right) y=4 x^3$
C
$3\left(1+x^2\right)=x^3$
D
$\quad 4\left(1-x^2\right)=x^3$
MHT CET Papers
EXAM MAP