1
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The distance of the point $\mathrm{P}(3,8,2)$ from the line $\frac{x-1}{2}=\frac{y-3}{4}=\frac{z-2}{3}$ measured parallel to the plane $3 x+2 y-2 z+15=0$ is

A
7 units
B
6 units
C
8 units
D
10 units
2
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The solution set for minimizing the function $\mathrm{z}=x+y$ with constraints $x+y \geqslant 2, x+2 y \leqslant 8, y \leqslant 3, x, y \geqslant 0$ contains

A
$x=0, y=3$
B
$x=8, y=0$
C
infinitely many points
D
$x=2, y=3$
3
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The abscissae of the points of the curve $y=x^3$ are in the interval $[-2,2]$, where the slope of the tangents can be obtained by mean value theorem for the interval $[-2,2]$ are

A
0
B
$\pm \sqrt{3}$
C
$\pm \frac{2}{\sqrt{3}}$
D
$\frac{\sqrt{3}}{2}$
4
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $x$ be the length of each of the equal sides of an isosceles triangle and $\theta$ be the angle between these sides. If $x$ is increasing at the rate $\frac{1}{12} \mathrm{~m} /$ hour and $\theta$ is increasing at the rate $\frac{\pi}{180} \mathrm{rad} /$ hour, then the rate at which area of the triangle is increasing when $x=12 \mathrm{~m}$ and $\theta=\frac{\pi}{4}$ is

A
$\left(\frac{\pi}{5}+\frac{1}{2}\right) \mathrm{m}^2 /$ hour
B
$\quad \sqrt{2}\left(\frac{\pi}{5}+\frac{1}{2}\right) \mathrm{m}^2 /$ hour
C
$2\left(\frac{\pi}{5}+\frac{1}{2}\right) \mathrm{m}^2 /$ hour
D
$\sqrt{3}\left(\frac{\pi}{5}+\frac{1}{2}\right) \mathrm{m}^2 /$ hour
MHT CET Papers
EXAM MAP