The distance of the point $\mathrm{P}(3,8,2)$ from the line $\frac{x-1}{2}=\frac{y-3}{4}=\frac{z-2}{3}$ measured parallel to the plane $3 x+2 y-2 z+15=0$ is
The solution set for minimizing the function $\mathrm{z}=x+y$ with constraints $x+y \geqslant 2, x+2 y \leqslant 8, y \leqslant 3, x, y \geqslant 0$ contains
The abscissae of the points of the curve $y=x^3$ are in the interval $[-2,2]$, where the slope of the tangents can be obtained by mean value theorem for the interval $[-2,2]$ are
Let $x$ be the length of each of the equal sides of an isosceles triangle and $\theta$ be the angle between these sides. If $x$ is increasing at the rate $\frac{1}{12} \mathrm{~m} /$ hour and $\theta$ is increasing at the rate $\frac{\pi}{180} \mathrm{rad} /$ hour, then the rate at which area of the triangle is increasing when $x=12 \mathrm{~m}$ and $\theta=\frac{\pi}{4}$ is