1
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

A particular solution of $3 \mathrm{e}^x \tan y \mathrm{~d} x+\left(1-\mathrm{e}^x\right) \sec ^2 y \mathrm{~d} y=0$ with $y(1)=\frac{\pi}{4}$ is

A
$\quad \tan y=\left(\frac{1-\mathrm{e}^3}{1-\mathrm{e}^x}\right)^3$
B
$\quad \tan y=\left(\frac{1-\mathrm{e}^2}{1-\mathrm{e}^x}\right)^3$
C
$\quad \tan y=\left(\frac{1-\mathrm{e}}{1-\mathrm{e}^x}\right)^3$
D
$\quad \tan y=\left(\frac{1-\mathrm{e}^x}{1-\mathrm{e}}\right)^3$
2
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ are nonzero vectors such that $\overline{\mathrm{a}}$ is perpendicular to $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}},|\overline{\mathrm{a}}|=1,|\overline{\mathrm{~b}}|=2,|\overline{\mathrm{c}}|=1$ and $\overline{\mathrm{b}} \cdot \overline{\mathrm{c}}=1$. There is nonzero vector $\overline{\mathrm{d}}$ coplanar with $\overline{\mathrm{a}}+\overline{\mathrm{b}}$ and $2 \overline{\mathrm{~b}}-\overline{\mathrm{c}}$. If $\overline{\mathrm{d}} \cdot \overline{\mathrm{a}}=1$, then $|\overline{\mathrm{d}}|^2=$

A
$13 y^2+14 y+5$
B
$\quad y^2+14 y+5$
C
$y^2-14 y-5$
D
$y^2-14 y+5$
3
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\sin ^{-1} x+\sin ^{-1} y=\frac{\pi}{3}$ and $\cot ^{-1}\left(\frac{1}{x}\right)-\cot ^{-1}\left(\frac{1}{y}\right)=0$ then $2 x^2+y^2-x y=$ $\qquad$

A
$\frac{1}{4}$
B
1
C
$\frac{1}{2}$
D
0
4
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\sin \left[\tan ^{-1}\left(\frac{1-x^2}{2 x}\right)+\cos ^{-1}\left(\frac{1-x^2}{1+x^2}\right)\right]$ is

A
0
B
1
C
-1
D
$\frac{1}{2}$
MHT CET Papers
EXAM MAP