1
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The direction ratios of the line of intersection of the planes $x-y+z-5=0$ and $x-3 y-6=0$, are

A
$1,-1,1$
B
$1,-3,0$
C
$3,1,-2$
D
$1,2,0$
2
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The distance between the line $\overline{\mathrm{r}}=3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\hat{\mathrm{k}}+\lambda(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})$ and the plane $\overline{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})=4$ is

A
$\frac{1}{\sqrt{6}}$ units
B
$\frac{3}{\sqrt{6}}$ units
C
$\frac{2}{\sqrt{6}}$ units
D
$\frac{5}{\sqrt{6}}$ units
3
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $y=\sin ^2\left(\cot ^{-1}\left(\sqrt{\frac{1-x}{1+x}}\right)\right)$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}=$

A
-1
B
1
C
$-\frac{1}{4}$
D
$\frac{1}{2}$
4
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int \frac{\sin x}{\sqrt{5 \sin ^2 x+6 \cos ^2 x}} d x $$

A

$\quad \log \left(\cos x+\sqrt{\cos ^2 x+5}\right)+\mathrm{c}$, where c is the constant of integration

B

$\quad \log \left(\sin x+\sqrt{6 \cos ^2 x+5}\right)+\mathrm{c}$, where c is the constant of integration

C

$-\log \left(\cos x+\sqrt{\cos ^2 x+6}\right)+\mathrm{c}$, where c is the constant of integration

D

$-\log \left(\cos x+\sqrt{\cos ^2 x+5}\right)+\mathrm{c}$, where c is the constant of integration

MHT CET Papers
EXAM MAP