1
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $f(\theta)=\cos \theta_1 \cdot \cos \theta_2 \cdot \cos \theta_3$ .............. $\cos \theta_n$, then $\tan \theta_1+\tan \theta_2+\tan \theta_3+$. ............ $+\tan \theta_{\mathrm{n}}=$

A
$\frac{-\mathrm{f}^{\prime}(\theta)}{\mathrm{f}(\theta)}$
B
$\frac{\mathrm{f}^{\prime}(\theta)}{\mathrm{f}(\theta)}$
C
$\frac{-\mathrm{f}^{\prime \prime}(\theta)}{\mathrm{f}^{\prime}(\theta)}$
D
$\frac{\mathrm{f}^{\prime \prime}(\theta)}{\mathrm{f}^{\prime}(\theta)}$
2
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The length of the altitude through the point $D$ of tetrahedron where the vertices of the tetrahedron are $A(2,3,1), B(4,1,-2), C(6,3,7), D(-5,-4,8)$, is

A
5.5 units
B
22 units
C
33 units
D
11 units
3
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The angle between the lines $\frac{x-1}{l}=\frac{y+1}{m}=\frac{z}{n}$ and $\frac{x+1}{\mathrm{~m}}=\frac{y-3}{\mathrm{n}}=\frac{\mathrm{z}-1}{l}$, where $l>\mathrm{m}>\mathrm{n}$ and $1, \mathrm{~m}, \mathrm{n}$ are roots of the equation $x^3+x^2-4 x-4=0$, is

A
$\cos ^{-1}\left(\frac{2}{9}\right)$
B
$\cos ^{-1}\left(\frac{-4}{9}\right)$
C
$\cos ^{-1}\left(\frac{2}{3}\right)$
D
$\cos ^{-1}\left(\frac{1}{9}\right)$
4
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The distance of the point $\mathrm{P}(3,8,2)$ from the line $\frac{x-1}{2}=\frac{y-3}{4}=\frac{z-2}{3}$ measured parallel to the plane $3 x+2 y-2 z+15=0$ is

A
7 units
B
6 units
C
8 units
D
10 units
MHT CET Papers
EXAM MAP