1
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are mutually exclusive and exhaustive events of a sample space $S$ such that $P(B)=\frac{3}{2} P(A)$ and $P(C)=\frac{1}{2} P(B)$, then $P(A)=$

A
$\frac{4}{13}$
B
$\frac{6}{13}$
C
$\frac{8}{13}$
D
$\frac{3}{13}$
2
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Angle between the parabola $y^2=4(x-1)$ and $x^2+4(y-3)=0$ at the common end of their latus rectum is

A
$\frac{\pi}{2}$
B
$\frac{\pi}{4}$
C
$\frac{\pi}{6}$
D
$\frac{\pi}{3}$
3
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The points $(1,3)$ and $(5,1)$ are two opposite vertices of a rectangle. The other two vertices are lie on the line $y=2 x+\mathrm{c}$ where c is the constant, then co-ordinates of other two vertices are

A
$(4,4),(2,0)$
B
$(4,4),(1,0)$
C
$(2,0),(4,1)$
D
$(2,0),(1,-1)$
4
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $y=\mathrm{a}^x \cdot \mathrm{~b}^{2 x-1}$, then $\frac{\mathrm{d}^2 y}{\mathrm{~d} x^2}$ is equal to

A
$\quad y\left(\log \left(a b^2\right)\right)$
B
$\quad y^2\left(\log \left(a \mathrm{~b}^2\right)\right)$
C
$\quad y\left(\log \left(a b^2\right)\right)^2$
D
$\quad y^2(\log (a b))^2$
MHT CET Papers
EXAM MAP