1
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\{(\mathrm{p} \wedge \sim \mathrm{q}) \wedge(\mathrm{p} \wedge \mathrm{r})\} \rightarrow \sim \mathrm{p} \vee \mathrm{q}$ has truth value false then truth values of the statements $p, q, r$ are respectively

A
$\mathrm{T}, \mathrm{T}, \mathrm{T}$
B
$\mathrm{F}, \mathrm{F}, \mathrm{F}$
C
$F, F, T$
D
$T, F, T$
2
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

In a triangle ABC , with usual notations, $\tan \left(\frac{\mathrm{A}}{2}\right)=\frac{5}{6}, \tan \left(\frac{\mathrm{C}}{2}\right)=\frac{2}{5}$, then

A
$\mathrm{a}, \mathrm{c}, \mathrm{b}$ are in A.P.
B
$\mathrm{b}, \mathrm{a}, \mathrm{c}$ are in A.P.
C
$\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P.
D
$\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in G.P.
3
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If ${ }^{n+4} C_{n+1}-{ }^{n+3} C_n=15(n+2)$, then $n=$

A
15
B
23
C
21
D
27
4
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The correct simplified circuit diagram for the logical statement $[\{\mathrm{q} \wedge(\sim \mathrm{q} \vee \mathrm{r})\} \wedge\{\sim \mathrm{p} \vee(\mathrm{p} \wedge \sim \mathrm{r})\}] \vee(\mathrm{p} \wedge \mathrm{r})$ Where $p, q, r$ represents switches $s_1, s_2, s_3$ respectively.

A
MHT CET 2025 21st April Evening Shift Mathematics - Mathematical Reasoning Question 1 English Option 1
B
MHT CET 2025 21st April Evening Shift Mathematics - Mathematical Reasoning Question 1 English Option 2
C
MHT CET 2025 21st April Evening Shift Mathematics - Mathematical Reasoning Question 1 English Option 3
D
MHT CET 2025 21st April Evening Shift Mathematics - Mathematical Reasoning Question 1 English Option 4
MHT CET Papers
EXAM MAP