1
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The length of the altitude through the point $D$ of tetrahedron where the vertices of the tetrahedron are $A(2,3,1), B(4,1,-2), C(6,3,7), D(-5,-4,8)$, is

A
5.5 units
B
22 units
C
33 units
D
11 units
2
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The angle between the lines $\frac{x-1}{l}=\frac{y+1}{m}=\frac{z}{n}$ and $\frac{x+1}{\mathrm{~m}}=\frac{y-3}{\mathrm{n}}=\frac{\mathrm{z}-1}{l}$, where $l>\mathrm{m}>\mathrm{n}$ and $1, \mathrm{~m}, \mathrm{n}$ are roots of the equation $x^3+x^2-4 x-4=0$, is

A
$\cos ^{-1}\left(\frac{2}{9}\right)$
B
$\cos ^{-1}\left(\frac{-4}{9}\right)$
C
$\cos ^{-1}\left(\frac{2}{3}\right)$
D
$\cos ^{-1}\left(\frac{1}{9}\right)$
3
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The distance of the point $\mathrm{P}(3,8,2)$ from the line $\frac{x-1}{2}=\frac{y-3}{4}=\frac{z-2}{3}$ measured parallel to the plane $3 x+2 y-2 z+15=0$ is

A
7 units
B
6 units
C
8 units
D
10 units
4
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The solution set for minimizing the function $\mathrm{z}=x+y$ with constraints $x+y \geqslant 2, x+2 y \leqslant 8, y \leqslant 3, x, y \geqslant 0$ contains

A
$x=0, y=3$
B
$x=8, y=0$
C
infinitely many points
D
$x=2, y=3$
MHT CET Papers
EXAM MAP