The equation of the curve passing through the origin and satisfying the equation $\left(1+x^2\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+2 x y=4 x^2$, is
The value of $m \in \mathbb{R}$, when angle between the vectors $\overline{\mathrm{p}}=\mathrm{m} y \hat{\mathrm{i}}-6 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$ and $\overline{\mathrm{q}}=y \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+2 \mathrm{~m} y \hat{\mathrm{k}}$ is obtuse angle, is
The volume of the tetrahedron whose coterminous edges are represented by
$$ \bar{a}=-12 \hat{i}+p \hat{k}, \bar{b}=3 \hat{j},-\hat{k}, \bar{c}=2 \hat{i}+\hat{j}-15 \hat{k} $$
570 cu. units, then $\mathrm{p}=$
With usual notations, the perimeter of a triangle ABC is 6 times the arithmetic mean of sine of its angles. If $\mathrm{a}=1$, then $\angle \mathrm{A}=$