1
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The centroid of tetrahedron with vertices $\mathrm{P}(5,-7,0), \mathrm{Q}(\mathrm{a}, 5,3), \mathrm{R}(4,-6, b)$ and $\mathrm{S}(6, \mathrm{c}, 2)$ is $(4,-3,2)$, then the value of $2 a+3 b+c$ is equal to

A
15
B
$-$7
C
7
D
$-$5
2
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The approximate value of $3^{2.001}$, if $\log 3=1.0986$ is

A
9.00898
B
9.0989
C
9.0898
D
9.00989
3
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the vectors $\overline{\mathrm{a}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}, \overline{\mathrm{b}}=2 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overline{\mathrm{c}}=\mathrm{pi}+\hat{\mathrm{j}}+\mathrm{q} \hat{\mathrm{k}}$ are mutually orthogonal, then $(p, q)$ is equal to

A
$(3,-2)$
B
$(-2,3)$
C
$(-3,2)$
D
$(2,-3)$
4
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\bar{u}, \bar{v}$ and $\bar{w}$ are three non-coplanar vectors, then $(\bar{u}+\bar{v}-\bar{w}) \cdot[(\bar{u}-\bar{v}) \times(\bar{v}-\bar{w})]$ is equal to

A
$\overline{\mathrm{u}} \cdot(\overline{\mathrm{v}} \times \overline{\mathrm{w}})$
B
$\overline{\mathrm{u}} \cdot(\overline{\mathrm{w}} \times \overline{\mathrm{v}})$
C
$3 \bar{u} \cdot(\bar{v} \times \bar{w})$
D
$0$
MHT CET Papers
EXAM MAP