1
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let A and B be $3 \times 3$ real matrices such that A is symmetric matrix and B is skew-symmetric matrix. Then the system of linear equations $\left(A^2 B^2-B^2 A^2\right) X=O$. where $X$ is $3 \times 1$ column matrix of unknown variables and $O$ is a $3 \times 1$ null matrix, has

A
a unique solution
B
exactly two solutions
C
no solution
D
infinitely many solutions
2
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=x^3-10 x^2+200 x-10$, then

A
$\mathrm{f}(x)$ is decreasing in $(-\infty, 10]$ and increasing in $[10, \infty)$
B
$f(x)$ is increasing in $(-\infty, 10]$ and decreasing in $[10, \infty)$
C
$\mathrm{f}(x)$ is increasing throughout real line
D
$\mathrm{f}(x)$ is decreasing throughout real line
3
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The number of common tangents to the circles $x^2+y^2-x=0$ and $x^2+y^2+x=0$ is /are

A
1
B
2
C
3
D
4
4
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\bar{a}=2 \hat{i}+\hat{j}-2 \hat{k}$ and $\bar{b}=\hat{i}+\hat{j}$. If $\bar{c}$ is a vector such that $\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}=|\overline{\mathrm{c}}|,|\overline{\mathrm{c}}-\overline{\mathrm{a}}|=2 \sqrt{2}$ and the angle between $(\overline{\mathrm{a}} \times \overline{\mathrm{b}})$ and $\overline{\mathrm{c}}$ is $30^{\circ}$, then $|(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{c}}|$ is equal to

A
$\frac{3}{2}$
B
$\frac{2}{3}$
C
$-\frac{3}{2}$
D
$-\frac{2}{3}$
MHT CET Papers
EXAM MAP