Let A and B be $3 \times 3$ real matrices such that A is symmetric matrix and B is skew-symmetric matrix. Then the system of linear equations $\left(A^2 B^2-B^2 A^2\right) X=O$. where $X$ is $3 \times 1$ column matrix of unknown variables and $O$ is a $3 \times 1$ null matrix, has
If $\mathrm{f}(x)=x^3-10 x^2+200 x-10$, then
The number of common tangents to the circles $x^2+y^2-x=0$ and $x^2+y^2+x=0$ is /are
Let $\bar{a}=2 \hat{i}+\hat{j}-2 \hat{k}$ and $\bar{b}=\hat{i}+\hat{j}$. If $\bar{c}$ is a vector such that $\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}=|\overline{\mathrm{c}}|,|\overline{\mathrm{c}}-\overline{\mathrm{a}}|=2 \sqrt{2}$ and the angle between $(\overline{\mathrm{a}} \times \overline{\mathrm{b}})$ and $\overline{\mathrm{c}}$ is $30^{\circ}$, then $|(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{c}}|$ is equal to