1
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\overline{\mathrm{a}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \overline{\mathrm{b}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overline{\mathrm{c}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}}$ be three vectors. A vector $\bar{v}$ in the plane of $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$, whose projection on $\overline{\mathrm{c}}$ is $\frac{1}{\sqrt{3}}$, is given by

A
$\hat{i}-3 \hat{j}+3 \hat{k}$
B
$-3 \hat{i}-3 \hat{j}-\hat{k}$
C
$3 \hat{i}-\hat{j}+3 \hat{k}$
D
$\hat{\mathrm{i}}+3 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}$
2
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation, having general solution as $A x^2+B y^2=1$, where $A$ and $B$ are arbitrary constants, is

A
$x y \frac{\mathrm{~d}^2 y}{\mathrm{~d} x^2}-x\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^2-y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$
B
$x y \frac{\mathrm{~d}^2 y}{\mathrm{~d} x^2}-x\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^2+y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$
C
$x y \frac{\mathrm{~d}^2 y}{\mathrm{~d} x^2}+x\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^2+y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$
D
$x y \frac{\mathrm{~d}^2 y}{\mathrm{~d} x^2}+x\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^2-y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$
3
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $z$ be a complex number such that $|z|+z=2+i$, where $i=\sqrt{-1}$, then $|z|$ is equal to

A
$\frac{4}{5}$
B
$\frac{5}{4}$
C
$\frac{5}{3}$
D
$\frac{\sqrt{41}}{4}$
4
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ are two unit vectors such that $5 \overline{\mathrm{a}}+4 \overline{\mathrm{~b}}$ and $\overline{\mathrm{a}}-2 \overline{\mathrm{~b}}$ are perpendicular to each other, then the angle between $\bar{a}$ and $\bar{b}$ is

A
$\frac{\pi}{3}$
B
$\cos ^{-1}\left(\frac{2}{3}\right)$
C
$\frac{2 \pi}{3}$
D
$\cos ^{-1}\left(\frac{1}{3}\right)$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12