1
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation of $y=\mathrm{e}^x\left(\mathrm{a}+\mathrm{bx}+x^2\right)$ is

A
$\frac{\mathrm{d}^2 y}{\mathrm{~d} x^2}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}-2 y=0$
B
$\frac{\mathrm{d}^2 y}{\mathrm{dx}^2}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=0$
C
$\frac{\mathrm{d}^2 y}{\mathrm{dx}^2}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}-2 \mathrm{e}^x+y=0$
D
$\frac{\mathrm{d}^2 y}{\mathrm{dx}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}-\mathrm{e}^x+2 y=0$
2
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The mean of the numbers $a, b, 8,5,10$ is 6 and the variance is $6.8$ . Then which of the following gives possible values of $a$ and $b$ ?

A
$\mathrm{a}=3, \mathrm{~b}=4$
B
$\mathrm{a}=0, \mathrm{~b}=7$
C
$\mathrm{a=5, b=2}$
D
$\mathrm{a}=1, \mathrm{~b}=6$
3
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\overline{\mathrm{u}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}, \overline{\mathrm{v}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}$ and $\overline{\mathrm{w}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}$. If $\hat{\mathrm{n}}$ is a unit vector such that $\overline{\mathbf{u}} \cdot \hat{\mathrm{n}}=0$ and $\overline{\mathrm{v}} \cdot \hat{\mathrm{n}}=0$, then $|\overline{\mathrm{w}} \cdot \hat{\mathrm{n}}|$ is equal to

A
0
B
1
C
2
D
3
4
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

A thin uniform metal rod of mass ' $M$ ' and length ' $L$ ' is swinging about a horizontal axis passing through its end. Its maximum angular velocity is ' $\omega$ '. Its centre of mass rises to a maximum height of ( $\mathrm{g}=$ Acceleration due to gravity)

A
$\frac{\mathrm{L}^2 \omega^2}{3 \mathrm{~g}}$
B
$\frac{\mathrm{L}^2 \omega^2}{2 \mathrm{~g}}$
C
$\frac{\mathrm{L}^2 \omega^2}{6 \mathrm{~g}}$
D
$\frac{\mathrm{L}^2 \omega^2}{4 \mathrm{~g}}$
MHT CET Papers
EXAM MAP