1
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\begin{aligned} \cos \left(18^{\circ}-\mathrm{A}\right) \cos \left(18^{\circ}+\mathrm{A}\right) -\cos \left(72^{\circ}-\mathrm{A}\right) \cos \left(72^{\circ}+\mathrm{A}\right) \text { is equal to }\end{aligned}$

A
$\cos 54^{\circ}$
B
$\cos 36^{\circ}$
C
$\sin 54^{\circ}$
D
$\sin 36^{\circ}$
2
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\int \frac{\mathrm{d} x}{1+3 \sin ^2 x}=\frac{1}{2} \tan ^{-1}(\mathrm{f}(x))+\mathrm{c}$, where c is a constant of integration, then $\mathrm{f}(x)$ is equal to

A
$2 \tan x$
B
$\tan x$
C
$2 \sin x$
D
$\sin x$
3
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A random variable X has the following probability distribution

$X$ 1 2 3 4 5
$p(x)$ $\mathrm{k^2}$ $\mathrm{2k}$ $\mathrm{k}$ $\mathrm{2k}$ $\mathrm{5k^2}$

Then $\mathrm{p}(x \geq 2)$ is equal to

A
$\frac{35}{36}$
B
$\frac{34}{36}$
C
$\frac{33}{36}$
D
$\frac{31}{36}$
4
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $f:[-1,3] \rightarrow \mathbb{R}$ be defined as

$$\left\{\begin{array}{lc} |x|+[x], & -1 \leqslant x<1 \\ x+|x|, & 1 \leqslant x<2 \\ x+[x], & 2 \leqslant x \leqslant 3 \end{array}\right.$$

where $[t]$ denotes the greatest integer function. Then $f$ is discontinuous at

A
only two points
B
only three points
C
four or more points
D
only one point
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12