1
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The number of common tangents to the circles $x^2+y^2-x=0$ and $x^2+y^2+x=0$ is /are

A
1
B
2
C
3
D
4
2
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\bar{a}=2 \hat{i}+\hat{j}-2 \hat{k}$ and $\bar{b}=\hat{i}+\hat{j}$. If $\bar{c}$ is a vector such that $\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}=|\overline{\mathrm{c}}|,|\overline{\mathrm{c}}-\overline{\mathrm{a}}|=2 \sqrt{2}$ and the angle between $(\overline{\mathrm{a}} \times \overline{\mathrm{b}})$ and $\overline{\mathrm{c}}$ is $30^{\circ}$, then $|(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{c}}|$ is equal to

A
$\frac{3}{2}$
B
$\frac{2}{3}$
C
$-\frac{3}{2}$
D
$-\frac{2}{3}$
3
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The equation $\mathrm{e}^{\sin x}-\mathrm{e}^{-\sin x}=4$ has ̱_________ solutions.

A
2
B
4
C
3
D
no
4
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\int \frac{d x}{5+4 \sin x}$ is equal to

A
$\frac{2}{5} \tan ^{-1}\left(\frac{5 \tan \frac{x}{2}+4}{3}\right)+\mathrm{c}$, (where c is a constant of integration)
B
$\frac{2}{3} \tan ^{-1}\left(\frac{5 \tan \frac{x}{2}+4}{3}\right)+\mathrm{c}$, (where c is a constant of integration)
C
$\frac{2}{5} \log \left(\frac{5 \tan \frac{x}{2}+7}{5 \tan \frac{x}{2}+1}\right)+\mathrm{c}$, (where c is a constant of integration)
D
$\frac{2}{3} \log \left(\frac{5 \tan \frac{x}{2}+7}{5 \tan \frac{x}{2}+1}\right)+\mathrm{c}$, (where c is a constant of integration)
MHT CET Papers
EXAM MAP