1
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\int \frac{\mathrm{d} x}{1+3 \sin ^2 x}=\frac{1}{2} \tan ^{-1}(\mathrm{f}(x))+\mathrm{c}$, where c is a constant of integration, then $\mathrm{f}(x)$ is equal to

A
$2 \tan x$
B
$\tan x$
C
$2 \sin x$
D
$\sin x$
2
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A random variable X has the following probability distribution

$X$ 1 2 3 4 5
$p(x)$ $\mathrm{k^2}$ $\mathrm{2k}$ $\mathrm{k}$ $\mathrm{2k}$ $\mathrm{5k^2}$

Then $\mathrm{p}(x \geq 2)$ is equal to

A
$\frac{35}{36}$
B
$\frac{34}{36}$
C
$\frac{33}{36}$
D
$\frac{31}{36}$
3
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $f:[-1,3] \rightarrow \mathbb{R}$ be defined as

$$\left\{\begin{array}{lc} |x|+[x], & -1 \leqslant x<1 \\ x+|x|, & 1 \leqslant x<2 \\ x+[x], & 2 \leqslant x \leqslant 3 \end{array}\right.$$

where $[t]$ denotes the greatest integer function. Then $f$ is discontinuous at

A
only two points
B
only three points
C
four or more points
D
only one point
4
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\overline{\mathrm{a}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \overline{\mathrm{b}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overline{\mathrm{c}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}}$ be three vectors. A vector $\bar{v}$ in the plane of $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$, whose projection on $\overline{\mathrm{c}}$ is $\frac{1}{\sqrt{3}}$, is given by

A
$\hat{i}-3 \hat{j}+3 \hat{k}$
B
$-3 \hat{i}-3 \hat{j}-\hat{k}$
C
$3 \hat{i}-\hat{j}+3 \hat{k}$
D
$\hat{\mathrm{i}}+3 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}$
MHT CET Papers
EXAM MAP