1
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $f:[-1,3] \rightarrow \mathbb{R}$ be defined as

$$\left\{\begin{array}{lc} |x|+[x], & -1 \leqslant x<1 \\ x+|x|, & 1 \leqslant x<2 \\ x+[x], & 2 \leqslant x \leqslant 3 \end{array}\right.$$

where $[t]$ denotes the greatest integer function. Then $f$ is discontinuous at

A
only two points
B
only three points
C
four or more points
D
only one point
2
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\overline{\mathrm{a}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \overline{\mathrm{b}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overline{\mathrm{c}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}}$ be three vectors. A vector $\bar{v}$ in the plane of $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$, whose projection on $\overline{\mathrm{c}}$ is $\frac{1}{\sqrt{3}}$, is given by

A
$\hat{i}-3 \hat{j}+3 \hat{k}$
B
$-3 \hat{i}-3 \hat{j}-\hat{k}$
C
$3 \hat{i}-\hat{j}+3 \hat{k}$
D
$\hat{\mathrm{i}}+3 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}$
3
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation, having general solution as $A x^2+B y^2=1$, where $A$ and $B$ are arbitrary constants, is

A
$x y \frac{\mathrm{~d}^2 y}{\mathrm{~d} x^2}-x\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^2-y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$
B
$x y \frac{\mathrm{~d}^2 y}{\mathrm{~d} x^2}-x\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^2+y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$
C
$x y \frac{\mathrm{~d}^2 y}{\mathrm{~d} x^2}+x\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^2+y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$
D
$x y \frac{\mathrm{~d}^2 y}{\mathrm{~d} x^2}+x\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^2-y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$
4
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $z$ be a complex number such that $|z|+z=2+i$, where $i=\sqrt{-1}$, then $|z|$ is equal to

A
$\frac{4}{5}$
B
$\frac{5}{4}$
C
$\frac{5}{3}$
D
$\frac{\sqrt{41}}{4}$
MHT CET Papers
EXAM MAP