Let $f:[-1,3] \rightarrow \mathbb{R}$ be defined as
$$\left\{\begin{array}{lc} |x|+[x], & -1 \leqslant x<1 \\ x+|x|, & 1 \leqslant x<2 \\ x+[x], & 2 \leqslant x \leqslant 3 \end{array}\right.$$
where $[t]$ denotes the greatest integer function. Then $f$ is discontinuous at
Let $\overline{\mathrm{a}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \overline{\mathrm{b}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overline{\mathrm{c}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}}$ be three vectors. A vector $\bar{v}$ in the plane of $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$, whose projection on $\overline{\mathrm{c}}$ is $\frac{1}{\sqrt{3}}$, is given by
The differential equation, having general solution as $A x^2+B y^2=1$, where $A$ and $B$ are arbitrary constants, is
Let $z$ be a complex number such that $|z|+z=2+i$, where $i=\sqrt{-1}$, then $|z|$ is equal to