1
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\bar{u}, \bar{v}$ and $\bar{w}$ are three non-coplanar vectors, then $(\bar{u}+\bar{v}-\bar{w}) \cdot[(\bar{u}-\bar{v}) \times(\bar{v}-\bar{w})]$ is equal to

A
$\overline{\mathrm{u}} \cdot(\overline{\mathrm{v}} \times \overline{\mathrm{w}})$
B
$\overline{\mathrm{u}} \cdot(\overline{\mathrm{w}} \times \overline{\mathrm{v}})$
C
$3 \bar{u} \cdot(\bar{v} \times \bar{w})$
D
$0$
2
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $k$, if the slope of one of the lines given by $4 x^2+k x y+y^2=0$ is four times that of the other, is given by

A
4
B
2.5
C
5
D
1
3
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation of $y=\mathrm{e}^x\left(\mathrm{a}+\mathrm{bx}+x^2\right)$ is

A
$\frac{\mathrm{d}^2 y}{\mathrm{~d} x^2}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}-2 y=0$
B
$\frac{\mathrm{d}^2 y}{\mathrm{dx}^2}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=0$
C
$\frac{\mathrm{d}^2 y}{\mathrm{dx}^2}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}-2 \mathrm{e}^x+y=0$
D
$\frac{\mathrm{d}^2 y}{\mathrm{dx}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}-\mathrm{e}^x+2 y=0$
4
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The mean of the numbers $a, b, 8,5,10$ is 6 and the variance is $6.8$ . Then which of the following gives possible values of $a$ and $b$ ?

A
$\mathrm{a}=3, \mathrm{~b}=4$
B
$\mathrm{a}=0, \mathrm{~b}=7$
C
$\mathrm{a=5, b=2}$
D
$\mathrm{a}=1, \mathrm{~b}=6$
MHT CET Papers
EXAM MAP