1
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\int \frac{d x}{5+4 \sin x}$ is equal to

A
$\frac{2}{5} \tan ^{-1}\left(\frac{5 \tan \frac{x}{2}+4}{3}\right)+\mathrm{c}$, (where c is a constant of integration)
B
$\frac{2}{3} \tan ^{-1}\left(\frac{5 \tan \frac{x}{2}+4}{3}\right)+\mathrm{c}$, (where c is a constant of integration)
C
$\frac{2}{5} \log \left(\frac{5 \tan \frac{x}{2}+7}{5 \tan \frac{x}{2}+1}\right)+\mathrm{c}$, (where c is a constant of integration)
D
$\frac{2}{3} \log \left(\frac{5 \tan \frac{x}{2}+7}{5 \tan \frac{x}{2}+1}\right)+\mathrm{c}$, (where c is a constant of integration)
2
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $p \rightarrow(q \vee r)$ is false, then the truth values of $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are respectively

A
$\mathrm{F,F,F}$
B
$\mathrm{T}, \mathrm{T}, \mathrm{F}$
C
$\mathrm{T, F, F}$
D
$\mathrm{F}, \mathrm{T}, \mathrm{T}$
3
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The area of the region bounded by curves $y=3 x+1, y=4 x+1$ and $x=2$ is

A
1 sq. units
B
2 sq. units
C
3 sq. units
D
4 sq. units
4
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The region represented by the inequations $2 x+3 y \leqslant 18, x+y \geqslant 10, x \geqslant 0, y \geqslant 0$ is

A
unbounded
B
bounded region, but not a singleton set
C
singleton set
D
null set
MHT CET Papers
EXAM MAP