Two progressive waves $Y_1=\sin 2 \pi\left(\frac{t}{0 \cdot 4}-\frac{x}{4}\right)$ and $Y_2=\sin 2 \pi\left(\frac{t}{0 \cdot 4}+\frac{x}{4}\right)$ superpose to form a standing wave. ' $x$ ' and ' $y$ ' are in SI system. Amplitude of the particle at $x=0.5 \mathrm{~m}$ is $\left[\sin 45^{\circ}=\cos 45^{\circ}=\frac{1}{\sqrt{2}}\right]$
The strength of magnetic field at a perpendicular distance ' $x$ ' near a long straight conductor carrying current ' I ' is ' B '. The magnetic field at a distance $\frac{x}{3}$ from straight conductor will be
The ratio of the areas of the electron orbits for the second excited state to the first excited state for the hydrogen atom is
Two point charges $+8 q$ and $-2 q$ are located at $\mathrm{X}=0$ (origin) and $\mathrm{X}=\mathrm{L}$ respectively. The net electric field due to these two charges is zero at point $P$ on $X$-axis. The location of point $P$ from the origin is